Lot of refactoring for the future. CoreXY support.

- Rudimentary CoreXY kinematics support. Didn’t test, but homing and
feed holds should work. See config.h. Please report successes and
issues as we find bugs.

- G40 (disable cutter comp) is now “supported”. Meaning that Grbl will
no longer issue an error when typically sent in g-code program header.

- Refactored coolant and spindle state setting into separate functions
for future features.

- Configuration option for fixing homing behavior when there are two
limit switches on the same axis sharing an input pin.

- Created a new “grbl.h” that will eventually be used as the main
include file for Grbl. Also will help simply uploading through the
Arduino IDE

- Separated out the alarms execution flags from the realtime (used be
called runtime) execution flag variable. Now reports exactly what
caused the alarm. Expandable for new alarms later on.

- Refactored the homing cycle to support CoreXY.

- Applied @EliteEng updates to Mega2560 support. Some pins were
reconfigured.

- Created a central step to position and vice versa function. Needed
for non-traditional cartesian machines. Should make it easier later.

- Removed the new CPU map for the Uno. No longer going to used. There
will be only one configuration to keep things uniform.
This commit is contained in:
Sonny Jeon
2015-01-14 22:14:52 -07:00
parent 7e67395463
commit 9be7b3d930
45 changed files with 529 additions and 15886 deletions

View File

@ -2,7 +2,7 @@
planner.c - buffers movement commands and manages the acceleration profile plan
Part of Grbl v0.9
Copyright (c) 2012-2014 Sungeun K. Jeon
Copyright (c) 2012-2015 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -284,17 +284,36 @@ uint8_t plan_check_full_buffer()
int32_t target_steps[N_AXIS];
float unit_vec[N_AXIS], delta_mm;
uint8_t idx;
#ifdef COREXY
target_steps[A_MOTOR] = lround(target[A_MOTOR]*settings.steps_per_mm[A_MOTOR]);
target_steps[B_MOTOR] = lround(target[B_MOTOR]*settings.steps_per_mm[B_MOTOR]);
block->steps[A_MOTOR] = labs((target_steps[X_AXIS]-pl.position[X_AXIS]) - (target_steps[Y_AXIS]-pl.position[Y_AXIS]));
block->steps[B_MOTOR] = labs((target_steps[X_AXIS]-pl.position[X_AXIS]) + (target_steps[Y_AXIS]-pl.position[Y_AXIS]));
#endif
for (idx=0; idx<N_AXIS; idx++) {
// Calculate target position in absolute steps. This conversion should be consistent throughout.
target_steps[idx] = lround(target[idx]*settings.steps_per_mm[idx]);
// Number of steps for each axis and determine max step events
block->steps[idx] = labs(target_steps[idx]-pl.position[idx]);
block->step_event_count = max(block->step_event_count, block->steps[idx]);
// Compute individual axes distance for move and prep unit vector calculations.
// Calculate target position in absolute steps, number of steps for each axis, and determine max step events.
// Also, compute individual axes distance for move and prep unit vector calculations.
// NOTE: Computes true distance from converted step values.
delta_mm = (target_steps[idx] - pl.position[idx])/settings.steps_per_mm[idx];
#ifdef COREXY
if ( !(idx == A_MOTOR) && !(idx == B_MOTOR) ) {
target_steps[idx] = lround(target[idx]*settings.steps_per_mm[idx]);
block->steps[idx] = labs(target_steps[idx]-pl.position[idx]);
}
block->step_event_count = max(block->step_event_count, block->steps[idx]);
if (idx == A_MOTOR) {
delta_mm = ((target_steps[X_AXIS]-pl.position[X_AXIS]) - (target_steps[Y_AXIS]-pl.position[Y_AXIS]))/settings.steps_per_mm[idx];
} else if (idx == B_MOTOR) {
delta_mm = ((target_steps[X_AXIS]-pl.position[X_AXIS]) + (target_steps[Y_AXIS]-pl.position[Y_AXIS]))/settings.steps_per_mm[idx];
} else {
delta_mm = (target_steps[idx] - pl.position[idx])/settings.steps_per_mm[idx];
}
#else
target_steps[idx] = lround(target[idx]*settings.steps_per_mm[idx]);
block->steps[idx] = labs(target_steps[idx]-pl.position[idx]);
block->step_event_count = max(block->step_event_count, block->steps[idx]);
delta_mm = (target_steps[idx] - pl.position[idx])/settings.steps_per_mm[idx];
#endif
unit_vec[idx] = delta_mm; // Store unit vector numerator. Denominator computed later.
// Set direction bits. Bit enabled always means direction is negative.
@ -403,9 +422,21 @@ uint8_t plan_check_full_buffer()
// Reset the planner position vectors. Called by the system abort/initialization routine.
void plan_sync_position()
{
// TODO: For motor configurations not in the same coordinate frame as the machine position,
// this function needs to be updated to accomodate the difference.
uint8_t idx;
for (idx=0; idx<N_AXIS; idx++) {
pl.position[idx] = sys.position[idx];
#ifdef COREXY
if (idx==A_MOTOR) {
pl.position[idx] = (sys.position[A_MOTOR] + sys.position[B_MOTOR])/2;
} else if (idx==B_MOTOR) {
pl.position[idx] = (sys.position[A_MOTOR] - sys.position[B_MOTOR])/2;
} else {
pl.position[idx] = sys.position[idx];
}
#else
pl.position[idx] = sys.position[idx];
#endif
}
}