Extended position reporting with both home and work coordinates. Home position now retained after reset. Other minor changes/fixes.
- Grbl now tracks both home and work (G92) coordinate systems and does live updates when G92 is called. - Rudimentary home and work position status reporting. Works but still under major construction. - Updated the main streaming script. Has a disabled periodic timer for querying status reports, disabled only because the Python timer doesn't consistently restart after the script exits. Add here only for user testing. - Fixed a bug to prevent an endless serial_write loop during status reports. - Refactored the planner variables to make it more clear what they are and make it easier for clear them.
This commit is contained in:
91
planner.c
91
planner.c
@ -41,11 +41,15 @@ static volatile uint8_t block_buffer_head; // Index of the next block to b
|
||||
static volatile uint8_t block_buffer_tail; // Index of the block to process now
|
||||
static uint8_t next_buffer_head; // Index of the next buffer head
|
||||
|
||||
static int32_t position[3]; // The planner position of the tool in absolute steps
|
||||
// static int32_t coord_offset[3]; // Current coordinate offset from machine zero in absolute steps
|
||||
static double previous_unit_vec[3]; // Unit vector of previous path line segment
|
||||
static double previous_nominal_speed; // Nominal speed of previous path line segment
|
||||
|
||||
// Define planner variables
|
||||
typedef struct {
|
||||
int32_t position[3]; // The planner position of the tool in absolute steps. Kept separate
|
||||
// from g-code position for movements requiring multiple line motions,
|
||||
// i.e. arcs, canned cycles, and backlash compensation.
|
||||
double previous_unit_vec[3]; // Unit vector of previous path line segment
|
||||
double previous_nominal_speed; // Nominal speed of previous path line segment
|
||||
} planner_t;
|
||||
static planner_t pl;
|
||||
|
||||
// Returns the index of the next block in the ring buffer
|
||||
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
||||
@ -305,10 +309,7 @@ void plan_reset_buffer()
|
||||
void plan_init()
|
||||
{
|
||||
plan_reset_buffer();
|
||||
clear_vector(position);
|
||||
// clear_vector(coord_offset);
|
||||
clear_vector_double(previous_unit_vec);
|
||||
previous_nominal_speed = 0.0;
|
||||
memset(&pl, 0, sizeof(pl)); // Clear planner struct
|
||||
}
|
||||
|
||||
void plan_discard_current_block()
|
||||
@ -357,14 +358,14 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, uint8_t in
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
if (target[X_AXIS] < pl.position[X_AXIS]) { block->direction_bits |= (1<<X_DIRECTION_BIT); }
|
||||
if (target[Y_AXIS] < pl.position[Y_AXIS]) { block->direction_bits |= (1<<Y_DIRECTION_BIT); }
|
||||
if (target[Z_AXIS] < pl.position[Z_AXIS]) { block->direction_bits |= (1<<Z_DIRECTION_BIT); }
|
||||
|
||||
// Number of steps for each axis
|
||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||
block->steps_x = labs(target[X_AXIS]-pl.position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-pl.position[Y_AXIS]);
|
||||
block->steps_z = labs(target[Z_AXIS]-pl.position[Z_AXIS]);
|
||||
block->step_event_count = max(block->steps_x, max(block->steps_y, block->steps_z));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
@ -372,9 +373,9 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, uint8_t in
|
||||
|
||||
// Compute path vector in terms of absolute step target and current positions
|
||||
double delta_mm[3];
|
||||
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/settings.steps_per_mm[X_AXIS];
|
||||
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/settings.steps_per_mm[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/settings.steps_per_mm[Z_AXIS];
|
||||
delta_mm[X_AXIS] = (target[X_AXIS]-pl.position[X_AXIS])/settings.steps_per_mm[X_AXIS];
|
||||
delta_mm[Y_AXIS] = (target[Y_AXIS]-pl.position[Y_AXIS])/settings.steps_per_mm[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-pl.position[Z_AXIS])/settings.steps_per_mm[Z_AXIS];
|
||||
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
|
||||
square(delta_mm[Z_AXIS]));
|
||||
double inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
||||
@ -419,16 +420,16 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, uint8_t in
|
||||
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
||||
|
||||
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||
if ((block_buffer_head != block_buffer_tail) && (pl.previous_nominal_speed > 0.0)) {
|
||||
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
||||
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
||||
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
||||
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
||||
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
||||
double cos_theta = - pl.previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
||||
- pl.previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
||||
- pl.previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
||||
|
||||
// Skip and use default max junction speed for 0 degree acute junction.
|
||||
if (cos_theta < 0.95) {
|
||||
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
||||
vmax_junction = min(pl.previous_nominal_speed,block->nominal_speed);
|
||||
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
||||
if (cos_theta > -0.95) {
|
||||
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
||||
@ -457,15 +458,15 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, uint8_t in
|
||||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||
|
||||
// Update previous path unit_vector and nominal speed
|
||||
memcpy(previous_unit_vec, unit_vec, sizeof(unit_vec)); // previous_unit_vec[] = unit_vec[]
|
||||
previous_nominal_speed = block->nominal_speed;
|
||||
memcpy(pl.previous_unit_vec, unit_vec, sizeof(unit_vec)); // pl.previous_unit_vec[] = unit_vec[]
|
||||
pl.previous_nominal_speed = block->nominal_speed;
|
||||
|
||||
// Update buffer head and next buffer head indices
|
||||
block_buffer_head = next_buffer_head;
|
||||
next_buffer_head = next_block_index(block_buffer_head);
|
||||
|
||||
// Update position
|
||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
// Update planner position
|
||||
memcpy(pl.position, target, sizeof(target)); // pl.position[] = target[]
|
||||
|
||||
planner_recalculate();
|
||||
}
|
||||
@ -473,22 +474,26 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, uint8_t in
|
||||
// Reset the planner position vector and planner speed
|
||||
void plan_set_current_position(double x, double y, double z)
|
||||
{
|
||||
// Track the position offset from the initial position
|
||||
// TODO: Need to make sure coord_offset is robust and/or needed. Can be used for a soft reset,
|
||||
// where the machine position is retained after a system abort/reset. However, this is not
|
||||
// correlated to the actual machine position after a soft reset and may not be needed. This could
|
||||
// be left to a user interface to maintain.
|
||||
// coord_offset[X_AXIS] += position[X_AXIS];
|
||||
// coord_offset[Y_AXIS] += position[Y_AXIS];
|
||||
// coord_offset[Z_AXIS] += position[Z_AXIS];
|
||||
position[X_AXIS] = lround(x*settings.steps_per_mm[X_AXIS]);
|
||||
position[Y_AXIS] = lround(y*settings.steps_per_mm[Y_AXIS]);
|
||||
position[Z_AXIS] = lround(z*settings.steps_per_mm[Z_AXIS]);
|
||||
// coord_offset[X_AXIS] -= position[X_AXIS];
|
||||
// coord_offset[Y_AXIS] -= position[Y_AXIS];
|
||||
// coord_offset[Z_AXIS] -= position[Z_AXIS];
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
clear_vector_double(previous_unit_vec);
|
||||
// To correlate status reporting work position correctly, the planner must force the steppers to
|
||||
// empty the block buffer and synchronize with the planner, as the real-time machine position and
|
||||
// the planner position at the end of the buffer are different. This will only be called with a
|
||||
// G92 is executed, which typically is used only at the beginning of a g-code program.
|
||||
// TODO: Find a robust way to avoid a planner synchronize, but may require a bit of ingenuity.
|
||||
plan_synchronize();
|
||||
|
||||
// Update the system coordinate offsets from machine zero
|
||||
sys.coord_offset[X_AXIS] += pl.position[X_AXIS];
|
||||
sys.coord_offset[Y_AXIS] += pl.position[Y_AXIS];
|
||||
sys.coord_offset[Z_AXIS] += pl.position[Z_AXIS];
|
||||
|
||||
memset(&pl, 0, sizeof(pl)); // Clear planner variables. Assume start from rest.
|
||||
|
||||
pl.position[X_AXIS] = lround(x*settings.steps_per_mm[X_AXIS]); // Update planner position
|
||||
pl.position[Y_AXIS] = lround(y*settings.steps_per_mm[Y_AXIS]);
|
||||
pl.position[Z_AXIS] = lround(z*settings.steps_per_mm[Z_AXIS]);
|
||||
sys.coord_offset[X_AXIS] -= pl.position[X_AXIS];
|
||||
sys.coord_offset[Y_AXIS] -= pl.position[Y_AXIS];
|
||||
sys.coord_offset[Z_AXIS] -= pl.position[Z_AXIS];
|
||||
}
|
||||
|
||||
// Re-initialize buffer plan with a partially completed block, assumed to exist at the buffer tail.
|
||||
|
Reference in New Issue
Block a user