further refactoring debris extraction
This commit is contained in:
parent
9a41b3a4fb
commit
898b4ca99d
2
Makefile
2
Makefile
@ -30,7 +30,7 @@
|
||||
DEVICE = atmega168
|
||||
CLOCK = 16000000
|
||||
PROGRAMMER = -c avrisp2 -P usb
|
||||
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o geometry.o
|
||||
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o
|
||||
FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m
|
||||
|
||||
# Tune the lines below only if you know what you are doing:
|
||||
|
39
gcode.c
39
gcode.c
@ -50,7 +50,6 @@
|
||||
#include "config.h"
|
||||
#include "motion_control.h"
|
||||
#include "spindle_control.h"
|
||||
#include "geometry.h"
|
||||
#include "errno.h"
|
||||
#include "serial_protocol.h"
|
||||
|
||||
@ -113,13 +112,29 @@ void gc_init() {
|
||||
memset(&gc, 0, sizeof(gc));
|
||||
gc.feed_rate = DEFAULT_FEEDRATE/60;
|
||||
select_plane(X_AXIS, Y_AXIS, Z_AXIS);
|
||||
gc.absolute_mode = true;
|
||||
gc.absolute_mode = TRUE;
|
||||
}
|
||||
|
||||
inline float to_millimeters(double value) {
|
||||
return(gc.inches_mode ? (value * INCHES_PER_MM) : value);
|
||||
}
|
||||
|
||||
// Find the angle in radians of deviance from the positive y axis. negative angles to the left of y-axis,
|
||||
// positive to the right.
|
||||
double theta(double x, double y)
|
||||
{
|
||||
double theta = atan(x/fabs(y));
|
||||
if (y>0) {
|
||||
return(theta);
|
||||
} else {
|
||||
if (theta>0)
|
||||
{
|
||||
return(M_PI-theta);
|
||||
} else {
|
||||
return(-M_PI-theta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
|
||||
// characters and signed floats (no whitespace).
|
||||
@ -129,9 +144,9 @@ uint8_t gc_execute_line(char *line) {
|
||||
double value;
|
||||
double unit_converted_value;
|
||||
double inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified
|
||||
int radius_mode = false;
|
||||
int radius_mode = FALSE;
|
||||
|
||||
uint8_t absolute_override = false; /* 1 = absolute motion for this block only {G53} */
|
||||
uint8_t absolute_override = FALSE; /* 1 = absolute motion for this block only {G53} */
|
||||
uint8_t next_action = NEXT_ACTION_DEFAULT; /* One of the NEXT_ACTION_-constants */
|
||||
|
||||
double target[3], offset[3];
|
||||
@ -163,15 +178,15 @@ uint8_t gc_execute_line(char *line) {
|
||||
case 17: select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
|
||||
case 18: select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
|
||||
case 19: select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
|
||||
case 20: gc.inches_mode = true; break;
|
||||
case 21: gc.inches_mode = false; break;
|
||||
case 20: gc.inches_mode = TRUE; break;
|
||||
case 21: gc.inches_mode = FALSE; break;
|
||||
case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break;
|
||||
case 53: absolute_override = true; break;
|
||||
case 53: absolute_override = TRUE; break;
|
||||
case 80: gc.motion_mode = MOTION_MODE_CANCEL; break;
|
||||
case 90: gc.absolute_mode = true; break;
|
||||
case 91: gc.absolute_mode = false; break;
|
||||
case 93: gc.inverse_feed_rate_mode = true; break;
|
||||
case 94: gc.inverse_feed_rate_mode = false; break;
|
||||
case 90: gc.absolute_mode = TRUE; break;
|
||||
case 91: gc.absolute_mode = FALSE; break;
|
||||
case 93: gc.inverse_feed_rate_mode = TRUE; break;
|
||||
case 94: gc.inverse_feed_rate_mode = FALSE; break;
|
||||
default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
|
||||
}
|
||||
break;
|
||||
@ -212,7 +227,7 @@ uint8_t gc_execute_line(char *line) {
|
||||
break;
|
||||
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;
|
||||
case 'P': p = value; break;
|
||||
case 'R': r = unit_converted_value; radius_mode = true; break;
|
||||
case 'R': r = unit_converted_value; radius_mode = TRUE; break;
|
||||
case 'S': gc.spindle_speed = value; break;
|
||||
case 'X': case 'Y': case 'Z':
|
||||
if (gc.absolute_mode || absolute_override) {
|
||||
|
3
gcode.h
3
gcode.h
@ -36,7 +36,4 @@ void gc_init();
|
||||
// Execute one block of rs275/ngc/g-code
|
||||
uint8_t gc_execute_line(char *line);
|
||||
|
||||
// get the current logical position (in current units), the current status code and the unit mode
|
||||
void gc_get_status(double *position_, uint8_t *status_code_, int *inches_mode_, uint32_t *line_number_);
|
||||
|
||||
#endif
|
||||
|
42
geometry.c
42
geometry.c
@ -1,42 +0,0 @@
|
||||
/*
|
||||
geometry.h - a place for geometry helpers
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "geometry.h"
|
||||
#include <avr/io.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Find the angle in radians of deviance from the positive y axis. negative angles to the left of y-axis,
|
||||
// positive to the right.
|
||||
double theta(double x, double y)
|
||||
{
|
||||
double theta = atan(x/fabs(y));
|
||||
if (y>0) {
|
||||
return(theta);
|
||||
} else {
|
||||
if (theta>0)
|
||||
{
|
||||
return(M_PI-theta);
|
||||
} else {
|
||||
return(-M_PI-theta);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
28
geometry.h
28
geometry.h
@ -1,28 +0,0 @@
|
||||
/*
|
||||
geometry.h - a place for geometry helpers
|
||||
Part of Grbl
|
||||
|
||||
Copyright (c) 2009 Simen Svale Skogsrud
|
||||
|
||||
Grbl is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Grbl is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef geometry_h
|
||||
#define geometry_h
|
||||
#include <avr/io.h>
|
||||
|
||||
// Find the angle from the positive y axis to the given point with respect to origo.
|
||||
double theta(double x, double y);
|
||||
|
||||
#endif
|
@ -34,18 +34,11 @@
|
||||
#include <stdlib.h>
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
#include "geometry.h"
|
||||
|
||||
#include "wiring_serial.h"
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
|
||||
inline void step_steppers(uint8_t bits);
|
||||
inline void step_axis(uint8_t axis);
|
||||
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
clear_vector(position);
|
||||
@ -53,7 +46,8 @@ void mc_init()
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
st_buffer_line(0, 0, 0, milliseconds*1000);
|
||||
st_synchronize();
|
||||
_delay_ms(milliseconds);
|
||||
}
|
||||
|
||||
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
@ -61,13 +55,10 @@ void mc_dwell(uint32_t milliseconds)
|
||||
// 1/feed_rate minutes.
|
||||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
// Flags to keep track of which axes to step
|
||||
uint8_t axis; // loop variable
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
int32_t steps[3]; // The target line in relative steps
|
||||
|
||||
// Setup ---------------------------------------------------------------------------------------------------
|
||||
|
||||
target[X_AXIS] = lround(x*X_STEPS_PER_MM);
|
||||
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
|
||||
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
|
||||
@ -95,6 +86,10 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
||||
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
||||
|
||||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
||||
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
|
||||
|
||||
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate)
|
||||
@ -102,14 +97,22 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
||||
if (millimeters_of_travel == 0.0) { return; }
|
||||
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
|
||||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
||||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
||||
// all segments.
|
||||
if (invert_feed_rate) { feed_rate *= segments; }
|
||||
// The angular motion for each segment
|
||||
double theta_per_segment = angular_travel/segments;
|
||||
// The linear motion for each segment
|
||||
double linear_per_segment = linear_travel/segments;
|
||||
// Compute the center of this circle
|
||||
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
|
||||
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
|
||||
// a vector to track the end point of each segment
|
||||
double target[3];
|
||||
int i;
|
||||
target[axis_linear] = position[axis_linear];
|
||||
// Initialize the linear axis
|
||||
target[axis_linear] = position[axis_linear]/Z_STEPS_PER_MM;
|
||||
for (i=0; i<=segments; i++) {
|
||||
target[axis_linear] += linear_per_segment;
|
||||
theta += theta_per_segment;
|
||||
|
@ -23,26 +23,18 @@
|
||||
|
||||
#include <avr/io.h>
|
||||
|
||||
#define MC_MODE_AT_REST 0
|
||||
#define MC_MODE_LINEAR 1
|
||||
#define MC_MODE_ARC 2
|
||||
#define MC_MODE_DWELL 3
|
||||
#define MC_MODE_HOME 4
|
||||
|
||||
// Initializes the motion_control subsystem resources
|
||||
void mc_init();
|
||||
|
||||
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
||||
// 1/feed_rate minutes.
|
||||
// (1 minute)/feed_rate time.
|
||||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space.
|
||||
// Known issue: This method pretends that all axes uses the same steps/mm as the X axis. Which might
|
||||
// not be the case ... (To be continued)
|
||||
// Regarding feed rate see note on mc_line.
|
||||
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
||||
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate);
|
||||
|
||||
@ -52,8 +44,4 @@ void mc_dwell(uint32_t milliseconds);
|
||||
// Send the tool home
|
||||
void mc_go_home();
|
||||
|
||||
// Check motion control status. result == 0: the system is idle. result > 0: the system is busy,
|
||||
// result < 0: the system is in an error state.
|
||||
int mc_status();
|
||||
|
||||
#endif
|
||||
|
@ -20,14 +20,17 @@
|
||||
|
||||
#ifndef nuts_bolts_h
|
||||
#define nuts_bolts_h
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
|
||||
|
||||
|
||||
#define max(a,b) (((a) > (b)) ? (a) : (b))
|
||||
#define min(a,b) (((a) < (b)) ? (a) : (b))
|
||||
|
||||
#define false 0
|
||||
#define true 1
|
||||
#define FALSE 0
|
||||
#define TRUE 1
|
||||
|
||||
// Decide the sign of a value
|
||||
#define signof(a) (((a)>0) ? 1 : (((a)<0) ? -1 : 0))
|
||||
|
@ -32,7 +32,6 @@
|
||||
|
||||
#include "wiring_serial.h"
|
||||
|
||||
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
|
||||
#define LINE_BUFFER_SIZE 10
|
||||
|
||||
struct Line {
|
||||
|
Loading…
Reference in New Issue
Block a user