further refactoring debris extraction

This commit is contained in:
Simen Svale Skogsrud 2010-03-03 17:52:56 +01:00
parent 9a41b3a4fb
commit 898b4ca99d
10 changed files with 53 additions and 123 deletions

View File

@ -30,7 +30,7 @@
DEVICE = atmega168 DEVICE = atmega168
CLOCK = 16000000 CLOCK = 16000000
PROGRAMMER = -c avrisp2 -P usb PROGRAMMER = -c avrisp2 -P usb
OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o geometry.o OBJECTS = main.o motion_control.o gcode.o spindle_control.o wiring_serial.o serial_protocol.o stepper.o
FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m FUSES = -U hfuse:w:0xd9:m -U lfuse:w:0x24:m
# Tune the lines below only if you know what you are doing: # Tune the lines below only if you know what you are doing:

39
gcode.c
View File

@ -50,7 +50,6 @@
#include "config.h" #include "config.h"
#include "motion_control.h" #include "motion_control.h"
#include "spindle_control.h" #include "spindle_control.h"
#include "geometry.h"
#include "errno.h" #include "errno.h"
#include "serial_protocol.h" #include "serial_protocol.h"
@ -113,13 +112,29 @@ void gc_init() {
memset(&gc, 0, sizeof(gc)); memset(&gc, 0, sizeof(gc));
gc.feed_rate = DEFAULT_FEEDRATE/60; gc.feed_rate = DEFAULT_FEEDRATE/60;
select_plane(X_AXIS, Y_AXIS, Z_AXIS); select_plane(X_AXIS, Y_AXIS, Z_AXIS);
gc.absolute_mode = true; gc.absolute_mode = TRUE;
} }
inline float to_millimeters(double value) { inline float to_millimeters(double value) {
return(gc.inches_mode ? (value * INCHES_PER_MM) : value); return(gc.inches_mode ? (value * INCHES_PER_MM) : value);
} }
// Find the angle in radians of deviance from the positive y axis. negative angles to the left of y-axis,
// positive to the right.
double theta(double x, double y)
{
double theta = atan(x/fabs(y));
if (y>0) {
return(theta);
} else {
if (theta>0)
{
return(M_PI-theta);
} else {
return(-M_PI-theta);
}
}
}
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase // Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floats (no whitespace). // characters and signed floats (no whitespace).
@ -129,9 +144,9 @@ uint8_t gc_execute_line(char *line) {
double value; double value;
double unit_converted_value; double unit_converted_value;
double inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified double inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified
int radius_mode = false; int radius_mode = FALSE;
uint8_t absolute_override = false; /* 1 = absolute motion for this block only {G53} */ uint8_t absolute_override = FALSE; /* 1 = absolute motion for this block only {G53} */
uint8_t next_action = NEXT_ACTION_DEFAULT; /* One of the NEXT_ACTION_-constants */ uint8_t next_action = NEXT_ACTION_DEFAULT; /* One of the NEXT_ACTION_-constants */
double target[3], offset[3]; double target[3], offset[3];
@ -163,15 +178,15 @@ uint8_t gc_execute_line(char *line) {
case 17: select_plane(X_AXIS, Y_AXIS, Z_AXIS); break; case 17: select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
case 18: select_plane(X_AXIS, Z_AXIS, Y_AXIS); break; case 18: select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
case 19: select_plane(Y_AXIS, Z_AXIS, X_AXIS); break; case 19: select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
case 20: gc.inches_mode = true; break; case 20: gc.inches_mode = TRUE; break;
case 21: gc.inches_mode = false; break; case 21: gc.inches_mode = FALSE; break;
case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break; case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break;
case 53: absolute_override = true; break; case 53: absolute_override = TRUE; break;
case 80: gc.motion_mode = MOTION_MODE_CANCEL; break; case 80: gc.motion_mode = MOTION_MODE_CANCEL; break;
case 90: gc.absolute_mode = true; break; case 90: gc.absolute_mode = TRUE; break;
case 91: gc.absolute_mode = false; break; case 91: gc.absolute_mode = FALSE; break;
case 93: gc.inverse_feed_rate_mode = true; break; case 93: gc.inverse_feed_rate_mode = TRUE; break;
case 94: gc.inverse_feed_rate_mode = false; break; case 94: gc.inverse_feed_rate_mode = FALSE; break;
default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT); default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
} }
break; break;
@ -212,7 +227,7 @@ uint8_t gc_execute_line(char *line) {
break; break;
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break; case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;
case 'P': p = value; break; case 'P': p = value; break;
case 'R': r = unit_converted_value; radius_mode = true; break; case 'R': r = unit_converted_value; radius_mode = TRUE; break;
case 'S': gc.spindle_speed = value; break; case 'S': gc.spindle_speed = value; break;
case 'X': case 'Y': case 'Z': case 'X': case 'Y': case 'Z':
if (gc.absolute_mode || absolute_override) { if (gc.absolute_mode || absolute_override) {

View File

@ -36,7 +36,4 @@ void gc_init();
// Execute one block of rs275/ngc/g-code // Execute one block of rs275/ngc/g-code
uint8_t gc_execute_line(char *line); uint8_t gc_execute_line(char *line);
// get the current logical position (in current units), the current status code and the unit mode
void gc_get_status(double *position_, uint8_t *status_code_, int *inches_mode_, uint32_t *line_number_);
#endif #endif

View File

@ -1,42 +0,0 @@
/*
geometry.h - a place for geometry helpers
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "geometry.h"
#include <avr/io.h>
#include <math.h>
#include <stdlib.h>
// Find the angle in radians of deviance from the positive y axis. negative angles to the left of y-axis,
// positive to the right.
double theta(double x, double y)
{
double theta = atan(x/fabs(y));
if (y>0) {
return(theta);
} else {
if (theta>0)
{
return(M_PI-theta);
} else {
return(-M_PI-theta);
}
}
}

View File

@ -1,28 +0,0 @@
/*
geometry.h - a place for geometry helpers
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef geometry_h
#define geometry_h
#include <avr/io.h>
// Find the angle from the positive y axis to the given point with respect to origo.
double theta(double x, double y);
#endif

View File

@ -34,18 +34,11 @@
#include <stdlib.h> #include <stdlib.h>
#include "nuts_bolts.h" #include "nuts_bolts.h"
#include "stepper.h" #include "stepper.h"
#include "geometry.h"
#include "wiring_serial.h" #include "wiring_serial.h"
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
int32_t position[3]; // The current position of the tool in absolute steps int32_t position[3]; // The current position of the tool in absolute steps
inline void step_steppers(uint8_t bits);
inline void step_axis(uint8_t axis);
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
void mc_init() void mc_init()
{ {
clear_vector(position); clear_vector(position);
@ -53,7 +46,8 @@ void mc_init()
void mc_dwell(uint32_t milliseconds) void mc_dwell(uint32_t milliseconds)
{ {
st_buffer_line(0, 0, 0, milliseconds*1000); st_synchronize();
_delay_ms(milliseconds);
} }
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
@ -61,13 +55,10 @@ void mc_dwell(uint32_t milliseconds)
// 1/feed_rate minutes. // 1/feed_rate minutes.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate) void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
{ {
// Flags to keep track of which axes to step
uint8_t axis; // loop variable uint8_t axis; // loop variable
int32_t target[3]; // The target position in absolute steps int32_t target[3]; // The target position in absolute steps
int32_t steps[3]; // The target line in relative steps int32_t steps[3]; // The target line in relative steps
// Setup ---------------------------------------------------------------------------------------------------
target[X_AXIS] = lround(x*X_STEPS_PER_MM); target[X_AXIS] = lround(x*X_STEPS_PER_MM);
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM); target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM); target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
@ -95,6 +86,10 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining // circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion. // axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis. // ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate) int axis_linear, double feed_rate, int invert_feed_rate)
@ -102,14 +97,22 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel)); double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
if (millimeters_of_travel == 0.0) { return; } if (millimeters_of_travel == 0.0) { return; }
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT); uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (invert_feed_rate) { feed_rate *= segments; } if (invert_feed_rate) { feed_rate *= segments; }
// The angular motion for each segment
double theta_per_segment = angular_travel/segments; double theta_per_segment = angular_travel/segments;
// The linear motion for each segment
double linear_per_segment = linear_travel/segments; double linear_per_segment = linear_travel/segments;
// Compute the center of this circle
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius; double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius; double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
// a vector to track the end point of each segment
double target[3]; double target[3];
int i; int i;
target[axis_linear] = position[axis_linear]; // Initialize the linear axis
target[axis_linear] = position[axis_linear]/Z_STEPS_PER_MM;
for (i=0; i<=segments; i++) { for (i=0; i<=segments; i++) {
target[axis_linear] += linear_per_segment; target[axis_linear] += linear_per_segment;
theta += theta_per_segment; theta += theta_per_segment;

View File

@ -23,26 +23,18 @@
#include <avr/io.h> #include <avr/io.h>
#define MC_MODE_AT_REST 0
#define MC_MODE_LINEAR 1
#define MC_MODE_ARC 2
#define MC_MODE_DWELL 3
#define MC_MODE_HOME 4
// Initializes the motion_control subsystem resources // Initializes the motion_control subsystem resources
void mc_init(); void mc_init();
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second // Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in // unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// 1/feed_rate minutes. // (1 minute)/feed_rate time.
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate); void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate);
// Prepare an arc. theta == start angle, angular_travel == number of radians to go along the arc, // Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the // positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
// circle in millimeters. axis_1 and axis_2 selects the plane in tool space. // circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
// Known issue: This method pretends that all axes uses the same steps/mm as the X axis. Which might // axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
// not be the case ... (To be continued)
// Regarding feed rate see note on mc_line.
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2, void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
int axis_linear, double feed_rate, int invert_feed_rate); int axis_linear, double feed_rate, int invert_feed_rate);
@ -52,8 +44,4 @@ void mc_dwell(uint32_t milliseconds);
// Send the tool home // Send the tool home
void mc_go_home(); void mc_go_home();
// Check motion control status. result == 0: the system is idle. result > 0: the system is busy,
// result < 0: the system is in an error state.
int mc_status();
#endif #endif

View File

@ -20,14 +20,17 @@
#ifndef nuts_bolts_h #ifndef nuts_bolts_h
#define nuts_bolts_h #define nuts_bolts_h
#include <string.h> #include <string.h>
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define max(a,b) (((a) > (b)) ? (a) : (b)) #define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b)) #define min(a,b) (((a) < (b)) ? (a) : (b))
#define false 0 #define FALSE 0
#define true 1 #define TRUE 1
// Decide the sign of a value // Decide the sign of a value
#define signof(a) (((a)>0) ? 1 : (((a)<0) ? -1 : 0)) #define signof(a) (((a)>0) ? 1 : (((a)<0) ? -1 : 0))

View File

@ -32,7 +32,6 @@
#include "wiring_serial.h" #include "wiring_serial.h"
#define TICKS_PER_MICROSECOND (F_CPU/1000000)
#define LINE_BUFFER_SIZE 10 #define LINE_BUFFER_SIZE 10
struct Line { struct Line {

View File

@ -24,11 +24,6 @@
#include <avr/io.h> #include <avr/io.h>
#include <avr/sleep.h> #include <avr/sleep.h>
#define STEPPER_MODE_STOPPED 0
#define STEPPER_MODE_RUNNING 1
#define STEPPER_MODE_LIMIT_OVERRUN 2
#define STEPPER_MODE_HOMING 3
// Initialize and start the stepper motor subsystem // Initialize and start the stepper motor subsystem
void st_init(); void st_init();