further refactoring debris extraction
This commit is contained in:
@@ -34,18 +34,11 @@
|
||||
#include <stdlib.h>
|
||||
#include "nuts_bolts.h"
|
||||
#include "stepper.h"
|
||||
#include "geometry.h"
|
||||
|
||||
#include "wiring_serial.h"
|
||||
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
int32_t position[3]; // The current position of the tool in absolute steps
|
||||
|
||||
inline void step_steppers(uint8_t bits);
|
||||
inline void step_axis(uint8_t axis);
|
||||
void prepare_linear_motion(uint32_t x, uint32_t y, uint32_t z, float feed_rate, int invert_feed_rate);
|
||||
|
||||
void mc_init()
|
||||
{
|
||||
clear_vector(position);
|
||||
@@ -53,7 +46,8 @@ void mc_init()
|
||||
|
||||
void mc_dwell(uint32_t milliseconds)
|
||||
{
|
||||
st_buffer_line(0, 0, 0, milliseconds*1000);
|
||||
st_synchronize();
|
||||
_delay_ms(milliseconds);
|
||||
}
|
||||
|
||||
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
@@ -61,13 +55,10 @@ void mc_dwell(uint32_t milliseconds)
|
||||
// 1/feed_rate minutes.
|
||||
void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate)
|
||||
{
|
||||
// Flags to keep track of which axes to step
|
||||
uint8_t axis; // loop variable
|
||||
int32_t target[3]; // The target position in absolute steps
|
||||
int32_t steps[3]; // The target line in relative steps
|
||||
|
||||
// Setup ---------------------------------------------------------------------------------------------------
|
||||
|
||||
target[X_AXIS] = lround(x*X_STEPS_PER_MM);
|
||||
target[Y_AXIS] = lround(y*Y_STEPS_PER_MM);
|
||||
target[Z_AXIS] = lround(z*Z_STEPS_PER_MM);
|
||||
@@ -95,6 +86,10 @@ void mc_line(double x, double y, double z, float feed_rate, int invert_feed_rate
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
||||
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
||||
|
||||
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
|
||||
// segment is configured in config.h by setting MM_PER_ARC_SEGMENT.
|
||||
|
||||
// ISSUE: The arc interpolator assumes all axes have the same steps/mm as the X axis.
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate)
|
||||
@@ -102,14 +97,22 @@ void mc_arc(double theta, double angular_travel, double radius, double linear_tr
|
||||
double millimeters_of_travel = hypot(angular_travel*radius, labs(linear_travel));
|
||||
if (millimeters_of_travel == 0.0) { return; }
|
||||
uint16_t segments = ceil(millimeters_of_travel/MM_PER_ARC_SEGMENT);
|
||||
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
|
||||
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
|
||||
// all segments.
|
||||
if (invert_feed_rate) { feed_rate *= segments; }
|
||||
// The angular motion for each segment
|
||||
double theta_per_segment = angular_travel/segments;
|
||||
// The linear motion for each segment
|
||||
double linear_per_segment = linear_travel/segments;
|
||||
// Compute the center of this circle
|
||||
double center_x = (position[axis_1]/X_STEPS_PER_MM)-sin(theta)*radius;
|
||||
double center_y = (position[axis_2]/Y_STEPS_PER_MM)-cos(theta)*radius;
|
||||
// a vector to track the end point of each segment
|
||||
double target[3];
|
||||
int i;
|
||||
target[axis_linear] = position[axis_linear];
|
||||
// Initialize the linear axis
|
||||
target[axis_linear] = position[axis_linear]/Z_STEPS_PER_MM;
|
||||
for (i=0; i<=segments; i++) {
|
||||
target[axis_linear] += linear_per_segment;
|
||||
theta += theta_per_segment;
|
||||
|
Reference in New Issue
Block a user