Settings refactoring. Bug fixes. Misc new features.
This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
This commit is contained in:
81
serial.c
81
serial.c
@@ -29,27 +29,37 @@
|
||||
#include "protocol.h"
|
||||
|
||||
|
||||
uint8_t rx_buffer[RX_BUFFER_SIZE];
|
||||
uint8_t rx_buffer_head = 0;
|
||||
volatile uint8_t rx_buffer_tail = 0;
|
||||
uint8_t serial_rx_buffer[RX_BUFFER_SIZE];
|
||||
uint8_t serial_rx_buffer_head = 0;
|
||||
volatile uint8_t serial_rx_buffer_tail = 0;
|
||||
|
||||
uint8_t tx_buffer[TX_BUFFER_SIZE];
|
||||
uint8_t tx_buffer_head = 0;
|
||||
volatile uint8_t tx_buffer_tail = 0;
|
||||
uint8_t serial_tx_buffer[TX_BUFFER_SIZE];
|
||||
uint8_t serial_tx_buffer_head = 0;
|
||||
volatile uint8_t serial_tx_buffer_tail = 0;
|
||||
|
||||
|
||||
#ifdef ENABLE_XONXOFF
|
||||
volatile uint8_t flow_ctrl = XON_SENT; // Flow control state variable
|
||||
|
||||
// Returns the number of bytes in the RX buffer. This replaces a typical byte counter to prevent
|
||||
// the interrupt and main programs from writing to the counter at the same time.
|
||||
static uint8_t get_rx_buffer_count()
|
||||
{
|
||||
if (rx_buffer_head == rx_buffer_tail) { return(0); }
|
||||
if (rx_buffer_head < rx_buffer_tail) { return(rx_buffer_tail-rx_buffer_head); }
|
||||
return (RX_BUFFER_SIZE - (rx_buffer_head-rx_buffer_tail));
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// Returns the number of bytes used in the RX serial buffer.
|
||||
uint8_t serial_get_rx_buffer_count()
|
||||
{
|
||||
uint8_t rtail = serial_rx_buffer_tail; // Copy to limit multiple calls to volatile
|
||||
if (serial_rx_buffer_head >= rtail) { return(serial_rx_buffer_head-rtail); }
|
||||
return (RX_BUFFER_SIZE - (rtail-serial_rx_buffer_head));
|
||||
}
|
||||
|
||||
|
||||
// Returns the number of bytes used in the TX serial buffer.
|
||||
// NOTE: Not used except for debugging and ensuring no TX bottlenecks.
|
||||
uint8_t serial_get_tx_buffer_count()
|
||||
{
|
||||
uint8_t ttail = serial_tx_buffer_tail; // Copy to limit multiple calls to volatile
|
||||
if (serial_tx_buffer_head >= ttail) { return(serial_tx_buffer_head-ttail); }
|
||||
return (TX_BUFFER_SIZE - (ttail-serial_tx_buffer_head));
|
||||
}
|
||||
|
||||
|
||||
void serial_init()
|
||||
@@ -76,19 +86,21 @@ void serial_init()
|
||||
}
|
||||
|
||||
|
||||
// Writes one byte to the TX serial buffer. Called by main program.
|
||||
// TODO: Check if we can speed this up for writing strings, rather than single bytes.
|
||||
void serial_write(uint8_t data) {
|
||||
// Calculate next head
|
||||
uint8_t next_head = tx_buffer_head + 1;
|
||||
uint8_t next_head = serial_tx_buffer_head + 1;
|
||||
if (next_head == TX_BUFFER_SIZE) { next_head = 0; }
|
||||
|
||||
// Wait until there is space in the buffer
|
||||
while (next_head == tx_buffer_tail) {
|
||||
while (next_head == serial_tx_buffer_tail) {
|
||||
if (sys.execute & EXEC_RESET) { return; } // Only check for abort to avoid an endless loop.
|
||||
}
|
||||
|
||||
// Store data and advance head
|
||||
tx_buffer[tx_buffer_head] = data;
|
||||
tx_buffer_head = next_head;
|
||||
serial_tx_buffer[serial_tx_buffer_head] = data;
|
||||
serial_tx_buffer_head = next_head;
|
||||
|
||||
// Enable Data Register Empty Interrupt to make sure tx-streaming is running
|
||||
UCSR0B |= (1 << UDRIE0);
|
||||
@@ -98,7 +110,7 @@ void serial_write(uint8_t data) {
|
||||
// Data Register Empty Interrupt handler
|
||||
ISR(SERIAL_UDRE)
|
||||
{
|
||||
uint8_t tail = tx_buffer_tail; // Temporary tx_buffer_tail (to optimize for volatile)
|
||||
uint8_t tail = serial_tx_buffer_tail; // Temporary serial_tx_buffer_tail (to optimize for volatile)
|
||||
|
||||
#ifdef ENABLE_XONXOFF
|
||||
if (flow_ctrl == SEND_XOFF) {
|
||||
@@ -111,34 +123,35 @@ ISR(SERIAL_UDRE)
|
||||
#endif
|
||||
{
|
||||
// Send a byte from the buffer
|
||||
UDR0 = tx_buffer[tail];
|
||||
UDR0 = serial_tx_buffer[tail];
|
||||
|
||||
// Update tail position
|
||||
tail++;
|
||||
if (tail == TX_BUFFER_SIZE) { tail = 0; }
|
||||
|
||||
tx_buffer_tail = tail;
|
||||
serial_tx_buffer_tail = tail;
|
||||
}
|
||||
|
||||
// Turn off Data Register Empty Interrupt to stop tx-streaming if this concludes the transfer
|
||||
if (tail == tx_buffer_head) { UCSR0B &= ~(1 << UDRIE0); }
|
||||
if (tail == serial_tx_buffer_head) { UCSR0B &= ~(1 << UDRIE0); }
|
||||
}
|
||||
|
||||
|
||||
// Fetches the first byte in the serial read buffer. Called by main program.
|
||||
uint8_t serial_read()
|
||||
{
|
||||
uint8_t tail = rx_buffer_tail; // Temporary rx_buffer_tail (to optimize for volatile)
|
||||
if (rx_buffer_head == tail) {
|
||||
uint8_t tail = serial_rx_buffer_tail; // Temporary serial_rx_buffer_tail (to optimize for volatile)
|
||||
if (serial_rx_buffer_head == tail) {
|
||||
return SERIAL_NO_DATA;
|
||||
} else {
|
||||
uint8_t data = rx_buffer[tail];
|
||||
uint8_t data = serial_rx_buffer[tail];
|
||||
|
||||
tail++;
|
||||
if (tail == RX_BUFFER_SIZE) { tail = 0; }
|
||||
rx_buffer_tail = tail;
|
||||
serial_rx_buffer_tail = tail;
|
||||
|
||||
#ifdef ENABLE_XONXOFF
|
||||
if ((get_rx_buffer_count() < RX_BUFFER_LOW) && flow_ctrl == XOFF_SENT) {
|
||||
if ((serial_get_serial_rx_buffer_count() < RX_BUFFER_LOW) && flow_ctrl == XOFF_SENT) {
|
||||
flow_ctrl = SEND_XON;
|
||||
UCSR0B |= (1 << UDRIE0); // Force TX
|
||||
}
|
||||
@@ -162,16 +175,16 @@ ISR(SERIAL_RX)
|
||||
case CMD_FEED_HOLD: bit_true_atomic(sys.execute, EXEC_FEED_HOLD); break; // Set as true
|
||||
case CMD_RESET: mc_reset(); break; // Call motion control reset routine.
|
||||
default: // Write character to buffer
|
||||
next_head = rx_buffer_head + 1;
|
||||
next_head = serial_rx_buffer_head + 1;
|
||||
if (next_head == RX_BUFFER_SIZE) { next_head = 0; }
|
||||
|
||||
// Write data to buffer unless it is full.
|
||||
if (next_head != rx_buffer_tail) {
|
||||
rx_buffer[rx_buffer_head] = data;
|
||||
rx_buffer_head = next_head;
|
||||
if (next_head != serial_rx_buffer_tail) {
|
||||
serial_rx_buffer[serial_rx_buffer_head] = data;
|
||||
serial_rx_buffer_head = next_head;
|
||||
|
||||
#ifdef ENABLE_XONXOFF
|
||||
if ((get_rx_buffer_count() >= RX_BUFFER_FULL) && flow_ctrl == XON_SENT) {
|
||||
if ((serial_get_serial_rx_buffer_count() >= RX_BUFFER_FULL) && flow_ctrl == XON_SENT) {
|
||||
flow_ctrl = SEND_XOFF;
|
||||
UCSR0B |= (1 << UDRIE0); // Force TX
|
||||
}
|
||||
@@ -185,7 +198,7 @@ ISR(SERIAL_RX)
|
||||
|
||||
void serial_reset_read_buffer()
|
||||
{
|
||||
rx_buffer_tail = rx_buffer_head;
|
||||
serial_rx_buffer_tail = serial_rx_buffer_head;
|
||||
|
||||
#ifdef ENABLE_XONXOFF
|
||||
flow_ctrl = XON_SENT;
|
||||
|
Reference in New Issue
Block a user