Settings refactoring. Bug fixes. Misc new features.
This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
This commit is contained in:
149
report.c
149
report.c
@ -35,6 +35,7 @@
|
||||
#include "planner.h"
|
||||
#include "spindle_control.h"
|
||||
#include "stepper.h"
|
||||
#include "serial.h"
|
||||
|
||||
|
||||
// Handles the primary confirmation protocol response for streaming interfaces and human-feedback.
|
||||
@ -155,43 +156,67 @@ void report_grbl_help() {
|
||||
"ctrl-x (reset Grbl)\r\n"));
|
||||
}
|
||||
|
||||
|
||||
// Grbl global settings print out.
|
||||
// NOTE: The numbering scheme here must correlate to storing in settings.c
|
||||
void report_grbl_settings() {
|
||||
printPgmString(PSTR("$0=")); printFloat_SettingValue(settings.steps_per_mm[X_AXIS]);
|
||||
printPgmString(PSTR(" (x, step/mm)\r\n$1=")); printFloat_SettingValue(settings.steps_per_mm[Y_AXIS]);
|
||||
printPgmString(PSTR(" (y, step/mm)\r\n$2=")); printFloat_SettingValue(settings.steps_per_mm[Z_AXIS]);
|
||||
printPgmString(PSTR(" (z, step/mm)\r\n$3=")); printFloat_SettingValue(settings.max_rate[X_AXIS]);
|
||||
printPgmString(PSTR(" (x max rate, mm/min)\r\n$4=")); printFloat_SettingValue(settings.max_rate[Y_AXIS]);
|
||||
printPgmString(PSTR(" (y max rate, mm/min)\r\n$5=")); printFloat_SettingValue(settings.max_rate[Z_AXIS]);
|
||||
printPgmString(PSTR(" (z max rate, mm/min)\r\n$6=")); printFloat_SettingValue(settings.acceleration[X_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (x accel, mm/sec^2)\r\n$7=")); printFloat_SettingValue(settings.acceleration[Y_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (y accel, mm/sec^2)\r\n$8=")); printFloat_SettingValue(settings.acceleration[Z_AXIS]/(60*60)); // Convert from mm/min^2 for human readability
|
||||
printPgmString(PSTR(" (z accel, mm/sec^2)\r\n$9=")); printFloat_SettingValue(-settings.max_travel[X_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (x max travel, mm)\r\n$10=")); printFloat_SettingValue(-settings.max_travel[Y_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (y max travel, mm)\r\n$11=")); printFloat_SettingValue(-settings.max_travel[Z_AXIS]); // Grbl internally store this as negative.
|
||||
printPgmString(PSTR(" (z max travel, mm)\r\n$12=")); print_uint8_base10(settings.pulse_microseconds);
|
||||
printPgmString(PSTR(" (step pulse, usec)\r\n$13=")); print_uint8_base10(settings.step_invert_mask);
|
||||
// Print Grbl settings.
|
||||
printPgmString(PSTR("$0=")); print_uint8_base10(settings.pulse_microseconds);
|
||||
printPgmString(PSTR(" (step pulse, usec)\r\n$1=")); print_uint8_base10(settings.stepper_idle_lock_time);
|
||||
printPgmString(PSTR(" (step idle delay, msec)\r\n$2=")); print_uint8_base10(settings.step_invert_mask);
|
||||
printPgmString(PSTR(" (step port invert mask:")); print_uint8_base2(settings.step_invert_mask);
|
||||
printPgmString(PSTR(")\r\n$14=")); print_uint8_base10(settings.dir_invert_mask);
|
||||
printPgmString(PSTR(")\r\n$3=")); print_uint8_base10(settings.dir_invert_mask);
|
||||
printPgmString(PSTR(" (dir port invert mask:")); print_uint8_base2(settings.dir_invert_mask);
|
||||
printPgmString(PSTR(")\r\n$15=")); print_uint8_base10(settings.stepper_idle_lock_time);
|
||||
printPgmString(PSTR(" (step idle delay, msec)\r\n$16=")); printFloat_SettingValue(settings.junction_deviation);
|
||||
printPgmString(PSTR(" (junction deviation, mm)\r\n$17=")); printFloat_SettingValue(settings.arc_tolerance);
|
||||
printPgmString(PSTR(" (arc tolerance, mm)\r\n$19=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
|
||||
printPgmString(PSTR(" (report inches, bool)\r\n$20=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_AUTO_START));
|
||||
printPgmString(PSTR(" (auto start, bool)\r\n$21=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
|
||||
printPgmString(PSTR(" (invert step enable, bool)\r\n$22=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
|
||||
printPgmString(PSTR(" (invert limit pins, bool)\r\n$23=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
|
||||
printPgmString(PSTR(" (soft limits, bool)\r\n$24=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
|
||||
printPgmString(PSTR(" (hard limits, bool)\r\n$25=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
|
||||
printPgmString(PSTR(" (homing cycle, bool)\r\n$26=")); print_uint8_base10(settings.homing_dir_mask);
|
||||
printPgmString(PSTR(")\r\n$4=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_ST_ENABLE));
|
||||
printPgmString(PSTR(" (step enable invert, bool)\r\n$5=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS));
|
||||
printPgmString(PSTR(" (limit pins invert, bool)\r\n$6=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_INVERT_PROBE_PIN));
|
||||
printPgmString(PSTR(" (probe pin invert, bool)\r\n$10=")); print_uint8_base10(settings.status_report_mask);
|
||||
printPgmString(PSTR(" (status report mask:")); print_uint8_base2(settings.status_report_mask);
|
||||
printPgmString(PSTR(")\r\n$11=")); printFloat_SettingValue(settings.junction_deviation);
|
||||
printPgmString(PSTR(" (junction deviation, mm)\r\n$12=")); printFloat_SettingValue(settings.arc_tolerance);
|
||||
printPgmString(PSTR(" (arc tolerance, mm)\r\n$13=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_REPORT_INCHES));
|
||||
printPgmString(PSTR(" (report inches, bool)\r\n$14=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_AUTO_START));
|
||||
printPgmString(PSTR(" (auto start, bool)\r\n$20=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE));
|
||||
printPgmString(PSTR(" (soft limits, bool)\r\n$21=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HARD_LIMIT_ENABLE));
|
||||
printPgmString(PSTR(" (hard limits, bool)\r\n$22=")); print_uint8_base10(bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE));
|
||||
printPgmString(PSTR(" (homing cycle, bool)\r\n$23=")); print_uint8_base10(settings.homing_dir_mask);
|
||||
printPgmString(PSTR(" (homing dir invert mask:")); print_uint8_base2(settings.homing_dir_mask);
|
||||
printPgmString(PSTR(")\r\n$27=")); printFloat_SettingValue(settings.homing_feed_rate);
|
||||
printPgmString(PSTR(" (homing feed, mm/min)\r\n$28=")); printFloat_SettingValue(settings.homing_seek_rate);
|
||||
printPgmString(PSTR(" (homing seek, mm/min)\r\n$29=")); print_uint8_base10(settings.homing_debounce_delay);
|
||||
printPgmString(PSTR(" (homing debounce, msec)\r\n$30=")); printFloat_SettingValue(settings.homing_pulloff);
|
||||
printPgmString(PSTR(" (homing pull-off, mm)\r\n"));
|
||||
printPgmString(PSTR(")\r\n$24=")); printFloat_SettingValue(settings.homing_feed_rate);
|
||||
printPgmString(PSTR(" (homing feed, mm/min)\r\n$25=")); printFloat_SettingValue(settings.homing_seek_rate);
|
||||
printPgmString(PSTR(" (homing seek, mm/min)\r\n$26=")); print_uint8_base10(settings.homing_debounce_delay);
|
||||
printPgmString(PSTR(" (homing debounce, msec)\r\n$27=")); printFloat_SettingValue(settings.homing_pulloff);
|
||||
printPgmString(PSTR(" (homing pull-off, mm)\r\n"));
|
||||
|
||||
// Print axis settings
|
||||
uint8_t idx, set_idx;
|
||||
uint8_t val = AXIS_SETTINGS_START_VAL;
|
||||
for (set_idx=0; set_idx<AXIS_N_SETTINGS; set_idx++) {
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
printPgmString(PSTR("$"));
|
||||
print_uint8_base10(val+idx);
|
||||
printPgmString(PSTR("="));
|
||||
switch (set_idx) {
|
||||
case 0: printFloat_SettingValue(settings.steps_per_mm[idx]); break;
|
||||
case 1: printFloat_SettingValue(settings.max_rate[idx]); break;
|
||||
case 2: printFloat_SettingValue(settings.acceleration[idx]/(60*60)); break;
|
||||
case 3: printFloat_SettingValue(-settings.max_travel[idx]); break;
|
||||
}
|
||||
printPgmString(PSTR(" ("));
|
||||
switch (idx) {
|
||||
case X_AXIS: printPgmString(PSTR("x")); break;
|
||||
case Y_AXIS: printPgmString(PSTR("y")); break;
|
||||
case Z_AXIS: printPgmString(PSTR("z")); break;
|
||||
}
|
||||
switch (set_idx) {
|
||||
case 0: printPgmString(PSTR(", step/mm")); break;
|
||||
case 1: printPgmString(PSTR(" max rate, mm/min")); break;
|
||||
case 2: printPgmString(PSTR(" accel, mm/sec^2")); break;
|
||||
case 3: printPgmString(PSTR(" max travel, mm")); break;
|
||||
}
|
||||
printPgmString(PSTR(")\r\n"));
|
||||
}
|
||||
val += AXIS_SETTINGS_INCREMENT;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -354,38 +379,54 @@ void report_realtime_status()
|
||||
}
|
||||
|
||||
// Report machine position
|
||||
printPgmString(PSTR(",MPos:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
print_position[i] = current_position[i]/settings.steps_per_mm[i];
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
printPgmString(PSTR(","));
|
||||
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_MACHINE_POSITION)) {
|
||||
printPgmString(PSTR(",MPos:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
print_position[i] = current_position[i]/settings.steps_per_mm[i];
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
}
|
||||
}
|
||||
|
||||
// Report work position
|
||||
printPgmString(PSTR("WPos:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
print_position[i] -= gc_state.coord_system[i]+gc_state.coord_offset[i];
|
||||
if (i == TOOL_LENGTH_OFFSET_AXIS) { print_position[i] -= gc_state.tool_length_offset; }
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_WORK_POSITION)) {
|
||||
printPgmString(PSTR(",WPos:"));
|
||||
for (i=0; i< N_AXIS; i++) {
|
||||
print_position[i] -= gc_state.coord_system[i]+gc_state.coord_offset[i];
|
||||
if (i == TOOL_LENGTH_OFFSET_AXIS) { print_position[i] -= gc_state.tool_length_offset; }
|
||||
printFloat_CoordValue(print_position[i]);
|
||||
if (i < (N_AXIS-1)) { printPgmString(PSTR(",")); }
|
||||
}
|
||||
}
|
||||
|
||||
// Returns the number of active blocks are in the planner buffer.
|
||||
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_PLANNER_BUFFER)) {
|
||||
printPgmString(PSTR(",Buf:"));
|
||||
print_uint8_base10(plan_get_block_buffer_count());
|
||||
}
|
||||
|
||||
// Report serial read buffer status
|
||||
if (bit_istrue(settings.status_report_mask,BITFLAG_RT_STATUS_SERIAL_RX)) {
|
||||
printPgmString(PSTR(",RX:"));
|
||||
print_uint8_base10(serial_get_rx_buffer_count());
|
||||
}
|
||||
|
||||
#ifdef USE_LINE_NUMBERS
|
||||
// Report current line number
|
||||
printPgmString(PSTR(",Ln:"));
|
||||
int32_t ln=0;
|
||||
plan_block_t * pb = plan_get_current_block();
|
||||
if(pb != NULL) {
|
||||
ln = pb->line_number;
|
||||
}
|
||||
printInteger(ln);
|
||||
// Report current line number
|
||||
printPgmString(PSTR(",Ln:"));
|
||||
int32_t ln=0;
|
||||
plan_block_t * pb = plan_get_current_block();
|
||||
if(pb != NULL) {
|
||||
ln = pb->line_number;
|
||||
}
|
||||
printInteger(ln);
|
||||
#endif
|
||||
|
||||
#ifdef REPORT_REALTIME_RATE
|
||||
// Report realtime rate
|
||||
printPgmString(PSTR(",F:"));
|
||||
printFloat_RateValue(st_get_realtime_rate());
|
||||
#endif
|
||||
// Report realtime rate
|
||||
printPgmString(PSTR(",F:"));
|
||||
printFloat_RateValue(st_get_realtime_rate());
|
||||
#endif
|
||||
|
||||
printPgmString(PSTR(">\r\n"));
|
||||
}
|
||||
|
Reference in New Issue
Block a user