Settings refactoring. Bug fixes. Misc new features.
This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
This commit is contained in:
173
limits.c
173
limits.c
@ -28,8 +28,8 @@
|
||||
#include "limits.h"
|
||||
#include "report.h"
|
||||
|
||||
|
||||
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Axis search distance multiplier. Must be > 1.
|
||||
// Homing axis search distance multiplier. Computed by this value times the axis max travel.
|
||||
#define HOMING_AXIS_SEARCH_SCALAR 1.5 // Must be > 1 to ensure limit switch will be engaged.
|
||||
|
||||
|
||||
void limits_init()
|
||||
@ -50,9 +50,9 @@ void limits_init()
|
||||
}
|
||||
|
||||
#ifdef ENABLE_SOFTWARE_DEBOUNCE
|
||||
MCUSR &= ~(1<<WDRF);
|
||||
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
||||
WDTCSR = (1<<WDP0); // Set time-out at ~32msec.
|
||||
MCUSR &= ~(1<<WDRF);
|
||||
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
||||
WDTCSR = (1<<WDP0); // Set time-out at ~32msec.
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -76,38 +76,38 @@ void limits_disable()
|
||||
// special pinout for an e-stop, but it is generally recommended to just directly connect
|
||||
// your e-stop switch to the Arduino reset pin, since it is the most correct way to do this.
|
||||
#ifndef ENABLE_SOFTWARE_DEBOUNCE
|
||||
ISR(LIMIT_INT_vect) // DEFAULT: Limit pin change interrupt process.
|
||||
{
|
||||
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
|
||||
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
|
||||
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
|
||||
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
|
||||
// limit setting if their limits are constantly triggering after a reset and move their axes.
|
||||
if (sys.state != STATE_ALARM) {
|
||||
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
|
||||
mc_reset(); // Initiate system kill.
|
||||
bit_true_atomic(sys.execute, (EXEC_ALARM | EXEC_CRIT_EVENT)); // Indicate hard limit critical event
|
||||
}
|
||||
}
|
||||
}
|
||||
#else // OPTIONAL: Software debounce limit pin routine.
|
||||
// Upon limit pin change, enable watchdog timer to create a short delay.
|
||||
ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } }
|
||||
ISR(WDT_vect) // Watchdog timer ISR
|
||||
{
|
||||
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
|
||||
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
|
||||
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
|
||||
uint8_t bits = LIMIT_PIN;
|
||||
// Check limit pin state.
|
||||
if (bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { bits ^= LIMIT_MASK; }
|
||||
if (bits & LIMIT_MASK) {
|
||||
ISR(LIMIT_INT_vect) // DEFAULT: Limit pin change interrupt process.
|
||||
{
|
||||
// Ignore limit switches if already in an alarm state or in-process of executing an alarm.
|
||||
// When in the alarm state, Grbl should have been reset or will force a reset, so any pending
|
||||
// moves in the planner and serial buffers are all cleared and newly sent blocks will be
|
||||
// locked out until a homing cycle or a kill lock command. Allows the user to disable the hard
|
||||
// limit setting if their limits are constantly triggering after a reset and move their axes.
|
||||
if (sys.state != STATE_ALARM) {
|
||||
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
|
||||
mc_reset(); // Initiate system kill.
|
||||
bit_true_atomic(sys.execute, (EXEC_ALARM | EXEC_CRIT_EVENT)); // Indicate hard limit critical event
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else // OPTIONAL: Software debounce limit pin routine.
|
||||
// Upon limit pin change, enable watchdog timer to create a short delay.
|
||||
ISR(LIMIT_INT_vect) { if (!(WDTCSR & (1<<WDIE))) { WDTCSR |= (1<<WDIE); } }
|
||||
ISR(WDT_vect) // Watchdog timer ISR
|
||||
{
|
||||
WDTCSR &= ~(1<<WDIE); // Disable watchdog timer.
|
||||
if (sys.state != STATE_ALARM) { // Ignore if already in alarm state.
|
||||
if (bit_isfalse(sys.execute,EXEC_ALARM)) {
|
||||
uint8_t bits = LIMIT_PIN;
|
||||
// Check limit pin state.
|
||||
if (bit_istrue(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { bits ^= LIMIT_MASK; }
|
||||
if (bits & LIMIT_MASK) {
|
||||
mc_reset(); // Initiate system kill.
|
||||
bit_true_atomic(sys.execute, (EXEC_ALARM | EXEC_CRIT_EVENT)); // Indicate hard limit critical event
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
@ -128,13 +128,19 @@ void limits_go_home(uint8_t cycle_mask)
|
||||
uint8_t n_cycle = (2*N_HOMING_LOCATE_CYCLE+1);
|
||||
float target[N_AXIS];
|
||||
|
||||
// Determine travel distance to the furthest homing switch based on user max travel settings.
|
||||
// NOTE: settings.max_travel[] is stored as a negative value.
|
||||
float max_travel = settings.max_travel[X_AXIS];
|
||||
if (max_travel > settings.max_travel[Y_AXIS]) { max_travel = settings.max_travel[Y_AXIS]; }
|
||||
if (max_travel > settings.max_travel[Z_AXIS]) { max_travel = settings.max_travel[Z_AXIS]; }
|
||||
uint8_t limit_pin[N_AXIS], step_pin[N_AXIS];
|
||||
float max_travel = 0.0;
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
// Initialize limit and step pin masks
|
||||
limit_pin[idx] = get_limit_pin_mask(idx);
|
||||
step_pin[idx] = get_step_pin_mask(idx);
|
||||
|
||||
// Determine travel distance to the furthest homing switch based on user max travel settings.
|
||||
// NOTE: settings.max_travel[] is stored as a negative value.
|
||||
if (max_travel > settings.max_travel[idx]) { max_travel = settings.max_travel[idx]; }
|
||||
}
|
||||
max_travel *= -HOMING_AXIS_SEARCH_SCALAR; // Ensure homing switches engaged by over-estimating max travel.
|
||||
|
||||
|
||||
plan_reset(); // Reset planner buffer to zero planner current position and to clear previous motions.
|
||||
|
||||
do {
|
||||
@ -142,9 +148,12 @@ void limits_go_home(uint8_t cycle_mask)
|
||||
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { invert_pin = approach; }
|
||||
else { invert_pin = !approach; }
|
||||
|
||||
// Set target location and rate for active axes.
|
||||
// Initialize and declare variables needed for homing routine.
|
||||
uint8_t n_active_axis = 0;
|
||||
uint8_t axislock = 0;
|
||||
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
// Set target location for active axes and setup computation for homing rate.
|
||||
if (bit_istrue(cycle_mask,bit(idx))) {
|
||||
n_active_axis++;
|
||||
if (!approach) { target[idx] = -max_travel; }
|
||||
@ -152,41 +161,35 @@ void limits_go_home(uint8_t cycle_mask)
|
||||
} else {
|
||||
target[idx] = 0.0;
|
||||
}
|
||||
}
|
||||
if (bit_istrue(settings.homing_dir_mask,(1<<X_DIRECTION_BIT))) { target[X_AXIS] = -target[X_AXIS]; }
|
||||
if (bit_istrue(settings.homing_dir_mask,(1<<Y_DIRECTION_BIT))) { target[Y_AXIS] = -target[Y_AXIS]; }
|
||||
if (bit_istrue(settings.homing_dir_mask,(1<<Z_DIRECTION_BIT))) { target[Z_AXIS] = -target[Z_AXIS]; }
|
||||
|
||||
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
|
||||
|
||||
// Reset homing axis locks based on cycle mask.
|
||||
uint8_t axislock = 0;
|
||||
if (bit_istrue(cycle_mask,bit(X_AXIS))) { axislock |= (1<<X_STEP_BIT); }
|
||||
if (bit_istrue(cycle_mask,bit(Y_AXIS))) { axislock |= (1<<Y_STEP_BIT); }
|
||||
if (bit_istrue(cycle_mask,bit(Z_AXIS))) { axislock |= (1<<Z_STEP_BIT); }
|
||||
// Set target direction based on cycle mask
|
||||
if (bit_istrue(settings.homing_dir_mask,bit(idx))) { target[idx] = -target[idx]; }
|
||||
|
||||
// Apply axislock to the step port pins active in this cycle.
|
||||
if (bit_istrue(cycle_mask,bit(idx))) { axislock |= step_pin[idx]; }
|
||||
}
|
||||
homing_rate *= sqrt(n_active_axis); // [sqrt(N_AXIS)] Adjust so individual axes all move at homing rate.
|
||||
sys.homing_axis_lock = axislock;
|
||||
|
||||
// Perform homing cycle. Planner buffer should be empty, as required to initiate the homing cycle.
|
||||
uint8_t limit_state;
|
||||
|
||||
#ifdef USE_LINE_NUMBERS
|
||||
plan_buffer_line(target, homing_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion.
|
||||
plan_buffer_line(target, homing_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan homing motion.
|
||||
#else
|
||||
plan_buffer_line(target, homing_rate, false); // Bypass mc_line(). Directly plan homing motion.
|
||||
plan_buffer_line(target, homing_rate, false); // Bypass mc_line(). Directly plan homing motion.
|
||||
#endif
|
||||
|
||||
st_prep_buffer(); // Prep and fill segment buffer from newly planned block.
|
||||
st_wake_up(); // Initiate motion
|
||||
do {
|
||||
// Check limit state. Lock out cycle axes when they change.
|
||||
limit_state = LIMIT_PIN;
|
||||
if (invert_pin) { limit_state ^= LIMIT_MASK; }
|
||||
if (axislock & (1<<X_STEP_BIT)) {
|
||||
if (limit_state & (1<<X_LIMIT_BIT)) { axislock &= ~(1<<X_STEP_BIT); }
|
||||
}
|
||||
if (axislock & (1<<Y_STEP_BIT)) {
|
||||
if (limit_state & (1<<Y_LIMIT_BIT)) { axislock &= ~(1<<Y_STEP_BIT); }
|
||||
}
|
||||
if (axislock & (1<<Z_STEP_BIT)) {
|
||||
if (limit_state & (1<<Z_LIMIT_BIT)) { axislock &= ~(1<<Z_STEP_BIT); }
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
if (axislock & step_pin[idx]) {
|
||||
if (limit_state & limit_pin[idx]) { axislock &= ~(step_pin[idx]); }
|
||||
}
|
||||
}
|
||||
sys.homing_axis_lock = axislock;
|
||||
st_prep_buffer(); // Check and prep segment buffer. NOTE: Should take no longer than 200us.
|
||||
@ -217,22 +220,31 @@ void limits_go_home(uint8_t cycle_mask)
|
||||
// do not move them.
|
||||
// NOTE: settings.max_travel[] is stored as a negative value.
|
||||
if (cycle_mask & bit(idx)) {
|
||||
if ( settings.homing_dir_mask & get_direction_mask(idx) ) {
|
||||
target[idx] = settings.homing_pulloff+settings.max_travel[idx];
|
||||
sys.position[idx] = lround(settings.max_travel[idx]*settings.steps_per_mm[idx]);
|
||||
} else {
|
||||
target[idx] = -settings.homing_pulloff;
|
||||
sys.position[idx] = 0;
|
||||
}
|
||||
|
||||
#ifdef HOMING_FORCE_SET_ORIGIN
|
||||
sys.position[idx] = 0; // Set axis homed location as axis origin
|
||||
target[idx] = settings.homing_pulloff;
|
||||
if ( bit_isfalse(settings.homing_dir_mask,bit(idx)) ) { target[idx] = -target[idx]; }
|
||||
#else
|
||||
if ( bit_istrue(settings.homing_dir_mask,bit(idx)) ) {
|
||||
target[idx] = settings.homing_pulloff+settings.max_travel[idx];
|
||||
sys.position[idx] = lround(settings.max_travel[idx]*settings.steps_per_mm[idx]);
|
||||
} else {
|
||||
target[idx] = -settings.homing_pulloff;
|
||||
sys.position[idx] = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
} else { // Non-active cycle axis. Set target to not move during pull-off.
|
||||
target[idx] = (float)sys.position[idx]/settings.steps_per_mm[idx];
|
||||
}
|
||||
}
|
||||
plan_sync_position(); // Sync planner position to current machine position for pull-off move.
|
||||
|
||||
#ifdef USE_LINE_NUMBERS
|
||||
plan_buffer_line(target, settings.homing_seek_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan motion.
|
||||
plan_buffer_line(target, settings.homing_seek_rate, false, HOMING_CYCLE_LINE_NUMBER); // Bypass mc_line(). Directly plan motion.
|
||||
#else
|
||||
plan_buffer_line(target, settings.homing_seek_rate, false); // Bypass mc_line(). Directly plan motion.
|
||||
plan_buffer_line(target, settings.homing_seek_rate, false); // Bypass mc_line(). Directly plan motion.
|
||||
#endif
|
||||
|
||||
// Initiate pull-off using main motion control routines.
|
||||
@ -252,9 +264,23 @@ void limits_go_home(uint8_t cycle_mask)
|
||||
void limits_soft_check(float *target)
|
||||
{
|
||||
uint8_t idx;
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { // NOTE: max_travel is stored as negative
|
||||
uint8_t soft_limit_error = false;
|
||||
for (idx=0; idx<N_AXIS; idx++) {
|
||||
|
||||
#ifdef HOMING_FORCE_SET_ORIGIN
|
||||
// When homing forced set origin is enabled, soft limits checks need to account for directionality.
|
||||
// NOTE: max_travel is stored as negative
|
||||
if (bit_istrue(settings.homing_dir_mask,bit(idx))) {
|
||||
if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { soft_limit_error = true; }
|
||||
} else {
|
||||
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { soft_limit_error = true; }
|
||||
}
|
||||
#else
|
||||
// NOTE: max_travel is stored as negative
|
||||
if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { soft_limit_error = true; }
|
||||
#endif
|
||||
|
||||
if (soft_limit_error) {
|
||||
// Force feed hold if cycle is active. All buffered blocks are guaranteed to be within
|
||||
// workspace volume so just come to a controlled stop so position is not lost. When complete
|
||||
// enter alarm mode.
|
||||
@ -265,12 +291,11 @@ void limits_soft_check(float *target)
|
||||
if (sys.abort) { return; }
|
||||
} while ( sys.state != STATE_IDLE || sys.state != STATE_QUEUED);
|
||||
}
|
||||
|
||||
|
||||
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
|
||||
bit_true_atomic(sys.execute, (EXEC_ALARM | EXEC_CRIT_EVENT)); // Indicate soft limit critical event
|
||||
protocol_execute_runtime(); // Execute to enter critical event loop and system abort
|
||||
return;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user