cleanup
This commit is contained in:
parent
0c262b03c2
commit
5f005f59f1
@ -18,6 +18,38 @@
|
|||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
/*
|
||||||
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||||||
|
|
||||||
|
s == speed, a == acceleration, t == time, d == distance
|
||||||
|
|
||||||
|
Basic definitions:
|
||||||
|
|
||||||
|
Speed[s_, a_, t_] := s + (a*t)
|
||||||
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||||
|
|
||||||
|
Distance to reach a specific speed with a constant acceleration:
|
||||||
|
|
||||||
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||||
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||||
|
|
||||||
|
Speed after a given distance of travel with constant acceleration:
|
||||||
|
|
||||||
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||||
|
m -> Sqrt[2 a d + s^2]
|
||||||
|
|
||||||
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||||
|
|
||||||
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||||
|
from initial speed s1 without ever stopping at a plateau:
|
||||||
|
|
||||||
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||||
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||||
|
|
||||||
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
#include <inttypes.h>
|
#include <inttypes.h>
|
||||||
#include <math.h>
|
#include <math.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
@ -40,7 +72,10 @@ uint8_t acceleration_management; // Acceleration management active?
|
|||||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||||
// given acceleration:
|
// given acceleration:
|
||||||
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
|
inline double estimate_acceleration_distance(double initial_rate, double target_rate, double acceleration) {
|
||||||
return((target_rate*target_rate-initial_rate*initial_rate)/(2L*acceleration));
|
return(
|
||||||
|
(target_rate*target_rate-initial_rate*initial_rate)/
|
||||||
|
(2L*acceleration)
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||||
@ -59,7 +94,10 @@ inline double estimate_acceleration_distance(double initial_rate, double target_
|
|||||||
intersection_distance distance */
|
intersection_distance distance */
|
||||||
|
|
||||||
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
|
inline double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
|
||||||
return((2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4*acceleration));
|
return(
|
||||||
|
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||||||
|
(4*acceleration)
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -103,7 +141,9 @@ void calculate_trapezoid_for_block(struct Block *block, double entry_factor, dou
|
|||||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||||
// acceleration within the allotted distance.
|
// acceleration within the allotted distance.
|
||||||
inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
|
inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
|
||||||
return(sqrt(target_velocity*target_velocity-2*acceleration*distance));
|
return(
|
||||||
|
sqrt(target_velocity*target_velocity-2*acceleration*distance)
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||||
@ -153,7 +193,7 @@ void planner_reverse_pass_kernel(struct Block *previous, struct Block *current,
|
|||||||
current->entry_factor = entry_factor;
|
current->entry_factor = entry_factor;
|
||||||
}
|
}
|
||||||
|
|
||||||
// recalculate_plan() needs to go over the current plan twice. Once in reverse and once forward. This
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||||
// implements the reverse pass.
|
// implements the reverse pass.
|
||||||
void planner_reverse_pass() {
|
void planner_reverse_pass() {
|
||||||
auto int8_t block_index = block_buffer_head;
|
auto int8_t block_index = block_buffer_head;
|
||||||
@ -185,7 +225,7 @@ void planner_forward_pass_kernel(struct Block *previous, struct Block *current,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// recalculate_plan() needs to go over the current plan twice. Once in reverse and once forward. This
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||||
// implements the forward pass.
|
// implements the forward pass.
|
||||||
void planner_forward_pass() {
|
void planner_forward_pass() {
|
||||||
int8_t block_index = block_buffer_tail;
|
int8_t block_index = block_buffer_tail;
|
||||||
@ -221,25 +261,26 @@ void planner_recalculate_trapezoids() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Recalculates the motion plan according to the following algorithm:
|
// Recalculates the motion plan according to the following algorithm:
|
||||||
|
//
|
||||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. Block.entry_factor)
|
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. Block.entry_factor)
|
||||||
// so that:
|
// so that:
|
||||||
// a. The junction jerk is within the set limit
|
// a. The junction jerk is within the set limit
|
||||||
// b. No speed reduction within one block requires faster accelleration than the one, true constant
|
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||||||
// acceleration.
|
// acceleration.
|
||||||
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||||||
// a. The speed increase within one block would require faster accelleration than the one, true
|
// a. The speed increase within one block would require faster accelleration than the one, true
|
||||||
// constant acceleration.
|
// constant acceleration.
|
||||||
|
//
|
||||||
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||||||
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||||||
// the set limit. Finally it will:
|
// the set limit. Finally it will:
|
||||||
|
//
|
||||||
// 3. Recalculate trapezoids for all blocks.
|
// 3. Recalculate trapezoids for all blocks.
|
||||||
|
|
||||||
void planner_recalculate() {
|
void planner_recalculate() {
|
||||||
PORTD ^= (1<<2);
|
|
||||||
planner_reverse_pass();
|
planner_reverse_pass();
|
||||||
planner_forward_pass();
|
planner_forward_pass();
|
||||||
planner_recalculate_trapezoids();
|
planner_recalculate_trapezoids();
|
||||||
PORTD ^= (1<<2);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void plan_init() {
|
void plan_init() {
|
||||||
@ -322,34 +363,3 @@ void plan_buffer_line(int32_t steps_x, int32_t steps_y, int32_t steps_z, uint32_
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
|
||||||
|
|
||||||
s == speed, a == acceleration, t == time, d == distance
|
|
||||||
|
|
||||||
Basic definitions:
|
|
||||||
|
|
||||||
Speed[s_, a_, t_] := s + (a*t)
|
|
||||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
|
||||||
|
|
||||||
Distance to reach a specific speed with a constant acceleration:
|
|
||||||
|
|
||||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
|
||||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
|
||||||
|
|
||||||
Speed after a given distance of travel with constant acceleration:
|
|
||||||
|
|
||||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
|
||||||
m -> Sqrt[2 a d + s^2]
|
|
||||||
|
|
||||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
|
||||||
|
|
||||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
|
||||||
from initial speed s1 without ever stopping at a plateau:
|
|
||||||
|
|
||||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
|
||||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
|
||||||
|
|
||||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user