Updated README. Max step rate back at 30kHz. Acceleration minor bug fix.

- Returned the max step rate to 30kHz. The new arc algorithm works uses
so much less CPU overhead, because the segments are longer, that the
planner has no problem computing through them.

- Fixed an issue with the acceleration independence scaling. Should now
work with accelerations above 400mm/sec^2 or so.

- Updated README
This commit is contained in:
Sonny Jeon
2012-12-21 08:51:36 -07:00
parent 3dfffa622d
commit 5e7c25d480
4 changed files with 15 additions and 12 deletions

View File

@ -14,6 +14,9 @@ Grbl includes full acceleration management with look ahead. That means the contr
- New stepper algorithm: Based on the Pramod Ranade inverse time algorithm, but modified to ensure steps are executed exactly. This algorithm performs a constant timer tick and has a hard limit of 30kHz maximum step frequency. It is also highly tuneable and should be very easy to port to other microcontroller architectures.
- Planner optimizations: Multiple changes to increase planner execution speed and removed redundant variables.
- Acceleration independence: Each axes may be defined with different acceleration parameters and Grbl will automagically calculate the maximum acceleration through a path depending on the direction traveled. This is very useful for machine that have very different axes properties, like the ShapeOko z-axis.
- Maximum velocity independence: As with acceleration, the maximum velocity of individual axes may be defined. All seek/rapids motions will move at these maximum rates, but never exceed any one axes. So, when two or more axes move, the limiting axis will move at its maximum rate, while the other axes are scaled down.
- Significantly improved arc performance: Arcs are now defined in terms of chordal tolerance, rather than segment length. Chordal tolerance will automatically scale all arc line segments depending on arc radius, such that the error does not exceed the tolerance value (default: 0.005 mm.) So, for larger radii arcs, Grbl can move faster through them, because the segments are always longer and the planner has more distance to plan with.
- Feedrate overrides: In the works, but planner has begun to be re-factored for this feature.
- Jogging controls: Methodology needs to be to figured out first. Last item on the agenda.
_The project was initially inspired by the Arduino GCode Interpreter by Mike Ellery_