lots and lots of bugfixes after running on reals hardware for the first time

This commit is contained in:
Simen Svale Skogsrud
2009-02-03 09:56:45 +01:00
parent 9799955555
commit 50a9f78088
19 changed files with 827 additions and 368 deletions

226
gcode.c
View File

@ -51,6 +51,9 @@
#include "motion_control.h"
#include "spindle_control.h"
#include "geometry.h"
#include "errno.h"
#include "wiring_serial.h"
#define NEXT_ACTION_DEFAULT 0
#define NEXT_ACTION_DWELL 1
@ -82,6 +85,7 @@ struct ParserState {
uint8_t motion_mode:3; /* {G0, G1, G2, G3, G38.2, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} */
uint8_t inverse_feed_rate_mode:1; /* G93, G94 */
uint8_t inches_mode:1; /* 0 = millimeter mode, 1 = inches mode {G20, G21} */
uint8_t absolute_mode:1; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
uint8_t program_flow:2;
int spindle_direction:2;
double feed_rate; /* Millimeters/second */
@ -91,9 +95,9 @@ struct ParserState {
uint8_t plane_axis_0, plane_axis_1; // The axes of the selected plane
};
struct ParserState state;
struct ParserState gc;
#define FAIL(status) state.status_code = status;
#define FAIL(status) gc.status_code = status;
int read_double(char *line, //!< string: line of RS274/NGC code being processed
int *counter, //!< pointer to a counter for position on the line
@ -103,44 +107,48 @@ int next_statement(char *letter, double *double_ptr, char *line, int *counter);
void gc_init() {
memset(&state, 0, sizeof(state));
state.feed_rate = DEFAULT_FEEDRATE;
memset(&gc, 0, sizeof(gc));
gc.feed_rate = DEFAULT_FEEDRATE;
gc.plane_axis_0 = X_AXIS; gc.plane_axis_1 = Y_AXIS;
}
inline float to_millimeters(double value) {
return(state.inches_mode ? value * INCHES_PER_MM : value);
return(gc.inches_mode ? value * INCHES_PER_MM : value);
}
void select_plane(uint8_t axis_0, uint8_t axis_1)
{
state.plane_axis_0 = axis_0;
state.plane_axis_1 = axis_1;
gc.plane_axis_0 = axis_0;
gc.plane_axis_1 = axis_1;
}
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floats (no whitespace).
uint8_t gc_execute_line(char *line) {
int counter;
int counter = 0;
char letter;
double value;
double unit_converted_value;
double inverse_feed_rate;
int radius_mode;
double inverse_feed_rate = -1; // negative inverse_feed_rate means no inverse_feed_rate specified
int radius_mode = false;
uint8_t absolute_mode; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
uint8_t absolute_override = false; /* 1 = absolute motion for this block only {G53} */
uint8_t next_action = NEXT_ACTION_DEFAULT; /* One of the NEXT_ACTION_-constants */
double target[3], offset[3];
double target[3], offset[3];
double p, r;
int int_value, axis;
double p = 0, r = 0;
int int_value;
state.line_number++;
state.status_code = GCSTATUS_OK;
clear_vector(target);
clear_vector(offset);
gc.line_number++;
gc.status_code = GCSTATUS_OK;
/* First: parse all statements */
if (line[0] == '(') { return(state.status_code); }
if (line[0] == '(') { return(gc.status_code); }
if (line[0] == '/') { counter++; } // ignore block delete
// Pass 1: Commands
@ -149,75 +157,81 @@ uint8_t gc_execute_line(char *line) {
switch(letter) {
case 'G':
switch(int_value) {
case 0: state.motion_mode = MOTION_MODE_RAPID_LINEAR; break;
case 1: state.motion_mode = MOTION_MODE_LINEAR; break;
case 2: state.motion_mode = MOTION_MODE_CW_ARC; break;
case 3: state.motion_mode = MOTION_MODE_CCW_ARC; break;
case 0: gc.motion_mode = MOTION_MODE_RAPID_LINEAR; break;
case 1: gc.motion_mode = MOTION_MODE_LINEAR; break;
case 2: gc.motion_mode = MOTION_MODE_CW_ARC; break;
case 3: gc.motion_mode = MOTION_MODE_CCW_ARC; break;
case 4: next_action = NEXT_ACTION_DWELL; break;
case 17: select_plane(X_AXIS, Y_AXIS); break;
case 18: select_plane(X_AXIS, Z_AXIS); break;
case 19: select_plane(Y_AXIS, Z_AXIS); break;
case 20: state.inches_mode = true; break;
case 21: state.inches_mode = false; break;
case 20: gc.inches_mode = true; break;
case 21: gc.inches_mode = false; break;
case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break;
case 53: absolute_mode = 1; break;
case 80: state.motion_mode = MOTION_MODE_CANCEL; break;
case 93: state.inverse_feed_rate_mode = true; break;
case 94: state.inverse_feed_rate_mode = false; break;
case 53: absolute_override = true; break;
case 80: gc.motion_mode = MOTION_MODE_CANCEL; break;
case 90: gc.absolute_mode = true; break;
case 91: gc.absolute_mode = false; break;
case 93: gc.inverse_feed_rate_mode = true; break;
case 94: gc.inverse_feed_rate_mode = false; break;
default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
}
break;
case 'M':
switch(int_value) {
case 0: case 1: state.program_flow = PROGRAM_FLOW_PAUSED; break;
case 2: state.program_flow = PROGRAM_FLOW_COMPLETED; break;
case 3: state.spindle_direction = 1; break;
case 4: state.spindle_direction = -1; break;
case 5: state.spindle_direction = 0; break;
case 0: case 1: gc.program_flow = PROGRAM_FLOW_PAUSED; break;
case 2: gc.program_flow = PROGRAM_FLOW_COMPLETED; break;
case 3: gc.spindle_direction = 1; break;
case 4: gc.spindle_direction = -1; break;
case 5: gc.spindle_direction = 0; break;
default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
}
break;
case 'T': state.tool = trunc(value); break;
case 'T': gc.tool = trunc(value); break;
}
if(state.status_code) { break; }
if(gc.status_code) { break; }
}
// If there were any errors parsing this line, we will return right away with the bad news
if (state.status_code) { return(state.status_code); }
if (gc.status_code) { return(gc.status_code); }
// Pass 2: Parameters
counter = 0;
clear_vector(offset);
memcpy(target, gc.position, sizeof(target)); // target = gc.position
while(next_statement(&letter, &value, line, &counter)) {
int_value = trunc(value);
unit_converted_value = to_millimeters(value);
switch(letter) {
case 'F':
if (state.inverse_feed_rate_mode) {
if (gc.inverse_feed_rate_mode) {
inverse_feed_rate = unit_converted_value; // seconds per motion for this motion only
} else {
state.feed_rate = unit_converted_value; // millimeters pr second
gc.feed_rate = unit_converted_value; // millimeters pr second
}
break;
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;
case 'P': p = value; break;
case 'R': r = unit_converted_value; radius_mode = true; break;
case 'S': state.spindle_speed = value; break;
case 'S': gc.spindle_speed = value; break;
case 'X': case 'Y': case 'Z':
axis = letter - 'X';
if (absolute_mode) {
target[axis] = unit_converted_value;
if (gc.absolute_mode || absolute_override) {
target[letter - 'X'] = unit_converted_value;
} else {
target[axis] = state.position[axis]+unit_converted_value;
};
target[letter - 'X'] += unit_converted_value;
}
break;
}
}
// If there were any errors parsing this line, we will return right away with the bad news
if (gc.status_code) { return(gc.status_code); }
// Update spindle state
if (state.spindle_direction) {
spindle_run(state.spindle_direction, state.spindle_speed);
if (gc.spindle_direction) {
spindle_run(gc.spindle_direction, gc.spindle_speed);
} else {
spindle_stop();
}
@ -227,7 +241,7 @@ uint8_t gc_execute_line(char *line) {
case NEXT_ACTION_GO_HOME: mc_go_home(); break;
case NEXT_ACTION_DWELL: mc_dwell(trunc(p*1000)); break;
case NEXT_ACTION_DEFAULT:
switch (state.motion_mode) {
switch (gc.motion_mode) {
case MOTION_MODE_CANCEL: break;
case MOTION_MODE_RAPID_LINEAR: case MOTION_MODE_LINEAR:
if (inverse_feed_rate) {
@ -235,7 +249,7 @@ uint8_t gc_execute_line(char *line) {
inverse_feed_rate, true);
} else {
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
(state.motion_mode == MOTION_MODE_LINEAR) ? state.feed_rate : RAPID_FEEDRATE,
(gc.motion_mode == MOTION_MODE_LINEAR) ? gc.feed_rate : RAPID_FEEDRATE,
false);
}
break;
@ -244,15 +258,14 @@ uint8_t gc_execute_line(char *line) {
/*
We need to calculate the center of the circle that has the designated radius and passes
through both the current position and the target position. This method calculates the following
set of equations where [x,y] is the vector from current to target position, d == distance of
set of equations where [x,y] is the vector from current to target position, d == magnitude of
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
the center of the travel vector. This is the distance from the center of the travel vector
to the center of our circle. A perpendicular to the travel vector is scaled to the length of
h and added to the center of the travel vector to form the new point [i,j] which will be
the center of our circle.
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
d^2 == x^2 + y^2
h^2 == r^2 + (d/2)^2
h^2 == r^2 - (d/2)^2
i == x/2 - y/d*h
j == y/2 + x/d*h
@ -273,35 +286,60 @@ uint8_t gc_execute_line(char *line) {
h - distance from center of CT to O
Expanding the equations:
h = sqrt(4 r^2 + x^2 + y^2)/2
d = sqrt(x^2 + y^2)
i = x/2 - (h * y)/d
j = y/2 + (h * x)/d
d -> sqrt(x^2 + y^2)
h -> sqrt(4 * r^2 - x^2 - y^2)/2
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
Which can be written:
i = (x - (y * sqrt(4 * r^2 + x^2 + y^2))/sqrt(x^2 + y^2))/2
j = (y + (x * sqrt(4 * r^2 + x^2 + y^2))/sqrt(x^2 + y^2))/2
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
Which can be optimized to:
Which we for size and speed reasons optimize to:
h_x2_div_d = sqrt(4 * r^2 + x^2 + y^2)/sqrt(x^2 + y^2)
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
i = (x - (y * h_x2_div_d))/2
j = (y + (x * h_x2_div_d))/2
*/
// Calculate the change in position along each selected axis
double x = target[state.plane_axis_0]-state.position[state.plane_axis_0];
double y = target[state.plane_axis_1]-state.position[state.plane_axis_1];
double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
clear_vector(&offset);
double h_x2_div_d = sqrt(4*r*r + x*x + y*y)/hypot(x,y); // == h * 2 / d
// The anti-clockwise circle lies to the right of the target direction. When offset is positive,
// the left hand circle will be generated - when it is negative the right hand circle is generated.
if (state.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
offset[state.plane_axis_0] = (x-(y*h_x2_div_d))/2;
offset[state.plane_axis_1] = (y+(x*h_x2_div_d))/2;
double h_x2_div_d = sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == h * 2 / d
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
// earthly CNC, and thus - for practical reasons - we will terminate promptly:
if(isnan(h_x2_div_d)) { FAIL(GCSTATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
/* The anti-clockwise circle lies to the right of the target direction. When offset is positive,
the left hand circle will be generated - when it is negative the right hand circle is generated.
T
^
|
|
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
C */
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
// Complete the operation by calculating the actual center of the arc
offset[gc.plane_axis_0] = (x-(y*h_x2_div_d))/2;
offset[gc.plane_axis_1] = (y+(x*h_x2_div_d))/2;
// printByte('(');
// printInteger(trunc(offset[gc.plane_axis_0])); printByte(',');
// printInteger(trunc(offset[gc.plane_axis_1]));
// printByte(')');
}
/*
@ -313,28 +351,34 @@ uint8_t gc_execute_line(char *line) {
* * *
* *
* *
* O ----T <- theta == theta_end (e.g. 90 degrees: theta == PI/2)
* O ----T <- theta_end (e.g. 90 degrees: theta_end == PI/2)
* /
C <- theta == theta_start (e.g. -145 degrees: theta == -PI*(3/4))
C <- theta_start (e.g. -145 degrees: theta_start == -PI*(3/4))
*/
// calculate the theta (angle) of the current point
double theta_start = theta(-offset[state.plane_axis_0], -offset[state.plane_axis_1]);
double theta_start = theta(-offset[gc.plane_axis_0], -offset[gc.plane_axis_1]);
// calculate the theta (angle) of the target point
double theta_end = theta(target[state.plane_axis_0] - offset[state.plane_axis_0] - state.position[state.plane_axis_0],
target[state.plane_axis_1] - offset[state.plane_axis_1] - state.position[state.plane_axis_1]);
double theta_end = theta(target[gc.plane_axis_0] - offset[gc.plane_axis_0] - gc.position[gc.plane_axis_0],
target[gc.plane_axis_1] - offset[gc.plane_axis_1] - gc.position[gc.plane_axis_1]);
// double theta_end = theta(5,0);
// ensure that the difference is positive so that we have clockwise travel
if (theta_end < theta_start) { theta_end += 2*M_PI; }
double angular_travel = theta_end-theta_start;
// Invert angular motion if the g-code wanted a counterclockwise arc
if (state.motion_mode == MOTION_MODE_CCW_ARC) {
if (gc.motion_mode == MOTION_MODE_CCW_ARC) {
angular_travel = angular_travel-2*M_PI;
}
// Find the radius
double radius = hypot(offset[state.plane_axis_0], offset[state.plane_axis_1]);
double radius = hypot(offset[gc.plane_axis_0], offset[gc.plane_axis_1]);
// Prepare the arc
mc_arc(theta_start, angular_travel, radius, state.plane_axis_0, state.plane_axis_1, state.feed_rate);
printString("mc_arc(");
printInteger(trunc(theta_start/M_PI*180)); printByte(',');
printInteger(trunc(angular_travel/M_PI*180)); printByte(',');
printInteger(trunc(radius)); printByte('');
printByte(')');
mc_arc(theta_start, angular_travel, radius, gc.plane_axis_0, gc.plane_axis_1, gc.feed_rate);
break;
}
}
@ -344,40 +388,39 @@ uint8_t gc_execute_line(char *line) {
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
memcpy(state.position, target, sizeof(state.position));
return(state.status_code);
memcpy(gc.position, target, sizeof(double)*3);
return(gc.status_code);
}
void gc_get_status(double *position, uint8_t *status_code, int *inches_mode, uint32_t *line_number)
{
int axis;
if (state.inches_mode) {
if (gc.inches_mode) {
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
position[axis] = state.position[axis]*INCHES_PER_MM;
position[axis] = gc.position[axis]*INCHES_PER_MM;
}
} else {
memcpy(position, state.position, sizeof(position));
memcpy(position, gc.position, sizeof(gc.position));
}
*status_code = state.status_code;
*inches_mode = state.inches_mode;
*line_number = state.line_number;
*status_code = gc.status_code;
*inches_mode = gc.inches_mode;
*line_number = gc.line_number;
}
// Parses the next statement and leaves the counter on the first character following
// the statement. Returns 1 if there was a statements, 0 if end of string was reached
// or there was an error (check state.status_code).
int next_statement(char *letter, double *double_ptr, char *line, int *counter) {
if (*line == 0) {
if (line[*counter] == 0) {
return(0); // No more statements
}
*letter = *line;
*letter = line[*counter];
if((*letter < 'A') || (*letter > 'Z')) {
FAIL(GCSTATUS_EXPECTED_COMMAND_LETTER);
return(0);
}
*counter++;
(*counter)++;
if (!read_double(line, counter, double_ptr)) {
return(0);
};
@ -400,4 +443,3 @@ int read_double(char *line, //!< string: line of RS274/NGC code being processed
*counter = end - line;
return(1);
}