formatting
This commit is contained in:
parent
6be195ba38
commit
464dcd12e8
30
doc/planner-maths.txt
Normal file
30
doc/planner-maths.txt
Normal file
@ -0,0 +1,30 @@
|
||||
Reasoning behind the mathematics in 'planner' module (in the key of 'Mathematica')
|
||||
==================================================================================
|
||||
|
||||
|
||||
s == speed, a == acceleration, t == time, d == distance
|
||||
|
||||
Basic definitions:
|
||||
|
||||
Speed[s_, a_, t_] := s + (a*t)
|
||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||
|
||||
Distance to reach a specific speed with a constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||
|
||||
Speed after a given distance of travel with constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||
m -> Sqrt[2 a d + s^2]
|
||||
|
||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||
|
||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||
from initial speed s1 without ever stopping at a plateau:
|
||||
|
||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||
|
||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
@ -27,14 +27,16 @@
|
||||
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
|
||||
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
|
||||
// (1 minute)/feed_rate time.
|
||||
#define mc_line(x, y, z, feed_rate, invert_feed_rate) plan_buffer_line(x, y, z, feed_rate, invert_feed_rate)
|
||||
// NOTE: Although this function structurally belongs in this module, there is nothing to do but
|
||||
// to forward the request to the planner. For efficiency the function is implemented with a macro.
|
||||
|
||||
#define mc_line(x, y, z, feed_rate, invert_feed_rate) plan_buffer_line(x, y, z, feed_rate, invert_feed_rate)
|
||||
|
||||
// Execute an arc. theta == start angle, angular_travel == number of radians to go along the arc,
|
||||
// positive angular_travel means clockwise, negative means counterclockwise. Radius == the radius of the
|
||||
// circle in millimeters. axis_1 and axis_2 selects the circle plane in tool space. Stick the remaining
|
||||
// axis in axis_l which will be the axis for linear travel if you are tracing a helical motion.
|
||||
|
||||
void mc_arc(double theta, double angular_travel, double radius, double linear_travel, int axis_1, int axis_2,
|
||||
int axis_linear, double feed_rate, int invert_feed_rate, double *position);
|
||||
|
||||
|
51
planner.c
51
planner.c
@ -20,38 +20,6 @@
|
||||
|
||||
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
||||
|
||||
/*
|
||||
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||||
|
||||
s == speed, a == acceleration, t == time, d == distance
|
||||
|
||||
Basic definitions:
|
||||
|
||||
Speed[s_, a_, t_] := s + (a*t)
|
||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||
|
||||
Distance to reach a specific speed with a constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||
|
||||
Speed after a given distance of travel with constant acceleration:
|
||||
|
||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||
m -> Sqrt[2 a d + s^2]
|
||||
|
||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||
|
||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||
from initial speed s1 without ever stopping at a plateau:
|
||||
|
||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||
|
||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||
*/
|
||||
|
||||
|
||||
#include <inttypes.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h>
|
||||
@ -86,11 +54,6 @@ double estimate_acceleration_distance(double initial_rate, double target_rate, d
|
||||
);
|
||||
}
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
|
||||
/* + <- some maximum rate we don't care about
|
||||
/|\
|
||||
/ | \
|
||||
@ -101,6 +64,12 @@ double estimate_acceleration_distance(double initial_rate, double target_rate, d
|
||||
| |
|
||||
intersection_distance distance */
|
||||
|
||||
|
||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||
|
||||
double intersection_distance(double initial_rate, double final_rate, double acceleration, double distance) {
|
||||
return(
|
||||
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||||
@ -108,10 +77,6 @@ double intersection_distance(double initial_rate, double final_rate, double acce
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
// The factors represent a factor of braking and must be in the range 0.0-1.0.
|
||||
|
||||
/*
|
||||
+--------+ <- nominal_rate
|
||||
/ \
|
||||
@ -121,6 +86,9 @@ double intersection_distance(double initial_rate, double final_rate, double acce
|
||||
time -->
|
||||
*/
|
||||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
// The factors represent a factor of braking and must be in the range 0.0-1.0.
|
||||
|
||||
void calculate_trapezoid_for_block(block_t *block, double entry_factor, double exit_factor) {
|
||||
block->initial_rate = ceil(block->nominal_rate*entry_factor);
|
||||
block->final_rate = ceil(block->nominal_rate*exit_factor);
|
||||
@ -418,4 +386,3 @@ void plan_buffer_line(double x, double y, double z, double feed_rate, int invert
|
||||
if (acceleration_manager_enabled) { planner_recalculate(); }
|
||||
st_wake_up();
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user