130 lines
4.3 KiB
C
Raw Normal View History

/*
report.h - reporting and messaging methods
Part of Grbl
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
Copyright (c) 2012-2016 Sungeun K. Jeon for Gnea Research LLC
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef report_h
#define report_h
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
// Define Grbl status codes. Valid values (0-255)
#define STATUS_OK 0
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-25 16:05:28 -06:00
#define STATUS_EXPECTED_COMMAND_LETTER 1
#define STATUS_BAD_NUMBER_FORMAT 2
#define STATUS_INVALID_STATEMENT 3
#define STATUS_NEGATIVE_VALUE 4
#define STATUS_SETTING_DISABLED 5
#define STATUS_SETTING_STEP_PULSE_MIN 6
#define STATUS_SETTING_READ_FAIL 7
#define STATUS_IDLE_ERROR 8
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
#define STATUS_SYSTEM_GC_LOCK 9
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-25 16:05:28 -06:00
#define STATUS_SOFT_LIMIT_ERROR 10
#define STATUS_OVERFLOW 11
#define STATUS_MAX_STEP_RATE_EXCEEDED 12
v1.0 Beta Release. - Tons of new stuff in this release, which is fairly stable and well tested. However, much more is coming soon! - Real-time parking motion with safety door. When this compile option is enabled, an opened safety door will cause Grbl to automatically feed hold, retract, de-energize the spindle/coolant, and parks near Z max. After the door is closed and resume is commanded, this reverses and the program continues as if nothing happened. This is also highly configurable. See config.h for details. - New spindle max and min rpm ‘$’ settings! This has been requested often. Grbl will output 5V when commanded to turn on the spindle at its max rpm, and 0.02V with min rpm. The voltage and the rpm range are linear to each other. This should help users tweak their settings to get close to true rpm’s. - If the new max rpm ‘$’ setting is set = 0 or less than min rpm, the spindle speed PWM pin will act like a regular on/off spindle enable pin. On pin D11. - BEWARE: Your old EEPROM settings will be wiped! The new spindle rpm settings require a new settings version, so Grbl will automatically wipe and restore the EEPROM with the new defaults. - Control pin can now be inverted individually with a CONTROL_INVERT_MASK in the cpu_map header file. Not typical for users to need this, but handy to have. - Fixed bug when Grbl receive too many characters in a line and overflows. Previously it would respond with an error per overflow character and another acknowledge upon an EOL character. This broke the streaming protocol. Now fixed to only respond with an error after an EOL character. - Fixed a bug with the safety door during an ALARM mode. You now can’t home or unlock the axes until the safety door has been closed. This is for safety reasons (obviously.) - Tweaked some the Mega2560 cpu_map settings . Increased segment buffer size and fixed the spindle PWM settings to output at a higher PWM frequency. - Generalized the delay function used by G4 delay for use by parking motion. Allows non-blocking status reports and real-time control during re-energizing of the spindle and coolant. - Added spindle rpm max and min defaults to default.h files. - Added a new print float for rpm values.
2015-08-27 21:37:19 -06:00
#define STATUS_CHECK_DOOR 13
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
#define STATUS_LINE_LENGTH_EXCEEDED 14
#define STATUS_TRAVEL_EXCEEDED 15
#define STATUS_INVALID_JOG_COMMAND 16
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-25 16:05:28 -06:00
#define STATUS_GCODE_UNSUPPORTED_COMMAND 20
#define STATUS_GCODE_MODAL_GROUP_VIOLATION 21
#define STATUS_GCODE_UNDEFINED_FEED_RATE 22
#define STATUS_GCODE_COMMAND_VALUE_NOT_INTEGER 23
#define STATUS_GCODE_AXIS_COMMAND_CONFLICT 24
#define STATUS_GCODE_WORD_REPEATED 25
#define STATUS_GCODE_NO_AXIS_WORDS 26
#define STATUS_GCODE_INVALID_LINE_NUMBER 27
#define STATUS_GCODE_VALUE_WORD_MISSING 28
#define STATUS_GCODE_UNSUPPORTED_COORD_SYS 29
#define STATUS_GCODE_G53_INVALID_MOTION_MODE 30
#define STATUS_GCODE_AXIS_WORDS_EXIST 31
#define STATUS_GCODE_NO_AXIS_WORDS_IN_PLANE 32
#define STATUS_GCODE_INVALID_TARGET 33
#define STATUS_GCODE_ARC_RADIUS_ERROR 34
#define STATUS_GCODE_NO_OFFSETS_IN_PLANE 35
#define STATUS_GCODE_UNUSED_WORDS 36
#define STATUS_GCODE_G43_DYNAMIC_AXIS_ERROR 37
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-14 17:36:29 -07:00
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
// Define Grbl alarm codes. Valid values (1-255). 0 is reserved.
#define ALARM_HARD_LIMIT_ERROR EXEC_ALARM_HARD_LIMIT
#define ALARM_SOFT_LIMIT_ERROR EXEC_ALARM_SOFT_LIMIT
#define ALARM_ABORT_CYCLE EXEC_ALARM_ABORT_CYCLE
#define ALARM_PROBE_FAIL_INITIAL EXEC_ALARM_PROBE_FAIL_INITIAL
#define ALARM_PROBE_FAIL_CONTACT EXEC_ALARM_PROBE_FAIL_CONTACT
#define ALARM_HOMING_FAIL_RESET EXEC_ALARM_HOMING_FAIL_RESET
#define ALARM_HOMING_FAIL_DOOR EXEC_ALARM_HOMING_FAIL_DOOR
#define ALARM_HOMING_FAIL_PULLOFF EXEC_ALARM_HOMING_FAIL_PULLOFF
#define ALARM_HOMING_FAIL_APPROACH EXEC_ALARM_HOMING_FAIL_APPROACH
// Define Grbl feedback message codes. Valid values (0-255).
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-14 17:36:29 -07:00
#define MESSAGE_CRITICAL_EVENT 1
#define MESSAGE_ALARM_LOCK 2
#define MESSAGE_ALARM_UNLOCK 3
#define MESSAGE_ENABLED 4
#define MESSAGE_DISABLED 5
#define MESSAGE_SAFETY_DOOR_AJAR 6
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
#define MESSAGE_CHECK_LIMITS 7
#define MESSAGE_PROGRAM_END 8
#define MESSAGE_RESTORE_DEFAULTS 9
#define MESSAGE_SPINDLE_RESTORE 10
#define MESSAGE_SLEEP_MODE 11
// Prints system status messages.
void report_status_message(uint8_t status_code);
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-14 17:36:29 -07:00
// Prints system alarm messages.
void report_alarm_message(uint8_t alarm_code);
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-14 17:36:29 -07:00
// Prints miscellaneous feedback messages.
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-14 17:36:29 -07:00
void report_feedback_message(uint8_t message_code);
// Prints welcome message
void report_init_message();
// Prints Grbl help and current global settings
void report_grbl_help();
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 11:32:23 -06:00
// Prints Grbl global settings
void report_grbl_settings();
// Prints an echo of the pre-parsed line received right before execution.
void report_echo_line_received(char *line);
// Prints realtime status report
void report_realtime_status();
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-02-28 22:03:26 -07:00
// Prints recorded probe position
void report_probe_parameters();
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-02-28 22:03:26 -07:00
// Prints Grbl NGC parameters (coordinate offsets, probe)
void report_ngc_parameters();
// Prints current g-code parser mode state
void report_gcode_modes();
// Prints startup line when requested and executed.
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 11:32:23 -06:00
void report_startup_line(uint8_t n, char *line);
void report_execute_startup_message(char *line, uint8_t status_code);
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 11:32:23 -06:00
// Prints build info and user info
void report_build_info(char *line);
Grbl v1.0e huge beta release. Overrides and new reporting. - Feature: Realtime feed, rapid, and spindle speed overrides. These alter the running machine state within tens of milliseconds! - Feed override: 100%, +/-10%, +/-1% commands with values 1-200% of programmed feed - Rapid override: 100%, 50%, 25% rapid rate commands - Spindle speed override: 100%, +/-10%, +/-1% commands with values 50-200% of programmed speed - Override values have configurable limits and increments in config.h. - Feature: Realtime toggle overrides for spindle stop, flood coolant, and optionally mist coolant - Spindle stop: Enables and disables spindle during a feed hold. Automatically restores last spindles state. - Flood and mist coolant: Immediately toggles coolant state until next toggle or g-code coolant command. - Feature: Jogging mode! Incremental and absolute modes supported. - Grbl accepts jogging-specific commands like $J=X100F50. An axis word and feed rate are required. G20/21 and G90/G91 commands are accepted. - Jog motions can be canceled at any time by a feed hold `!` command. The buffer is automatically flushed. (No resetting required). - Jog motions do not alter the g-code parser state so GUIs don’t have to track what they changed and correct it. - Feature: Laser mode setting. Allows Grbl to execute continuous motions with spindle speed and state changes. - Feature: Significantly improved status reports. Overhauled to cram in more meaningful data and still make it smaller on average. - All available data is now sent by default, but does not appear if it doesn’t change or is not active. - Machine position(MPos) or work position(WPos) is reported but not both at the same time. Instead, the work coordinate offsets (WCO)are sent intermittently whenever it changes or refreshes after 10-30 status reports. Position vectors are easily computed by WPos = MPos - WCO. - All data has changed in some way. Details of changes are in the markdown documents and wiki. - Feature: 16 new realtime commands to control overrides. All in extended-ASCII character space. - While they are not easily typeable and requires a GUI, they can’t be accidentally triggered by some latent character in the g-code program and have tons of room for expansion. - Feature: New substates for HOLD and SAFETY DOOR. A `:x` is appended to the state, where `x` is an integer and indicates a substate. - For example, each integer of a door state describes in what phase the machine is in during parking. Substates are detailed in the documentation. - Feature: With the alarm codes, homing and probe alarms have been expanded with more codes to provide more exact feedback on what caused the alarm. - Feature: New hard limit check upon power-up or reset. If detected, a feedback message to check the limit switches sent immediately after the welcome message. - May be disabled in config.h. - OEM feature: Enable/disable `$RST=` individual commands based on desired behavior in config.h. - OEM feature: Configurable EEPROM wipe to prevent certain data from being deleted during firmware upgrade to a new settings version or `RST=*` command. - OEM feature: Enable/disable the `$I=` build info write string with external EEPROM write example sketch. - This prevents a user from altering the build info string in EEPROM. This requires the vendor to write the string to EEPROM via external means. An Arduino example sketch is provided to accomplish this. This would be useful for contain product data that is retrievable. - Tweak: All feedback has been drastically trimmed to free up flash space for the v1.0 release. - The `$` help message is just one string, listing available commands. - The `$$` settings printout no longer includes descriptions. Only the setting values. (Sorry it’s this or remove overrides!) - Grbl `error:` and `ALARM:` responses now only contain codes. No descriptions. All codes are explained in documentation. - Grbl’s old feedback style may be restored via a config.h, but keep in mind that it will likely not fit into the Arduino’s flash space. - Tweak: Grbl now forces a buffer sync or stop motion whenever a g-code command needs to update and write a value to EEPROM or changes the work coordinate offset. - This addresses two old issues in all prior Grbl versions. First, an EEPROM write requires interrupts to be disabled, including stepper and serial comm. Steps can be lost and data can be corrupted. Second, the work position may not be correlated to the actual machine position, since machine position is derived from the actual current execution state, while work position is based on the g-code parser offset state. They are usually not in sync and the parser state is several motions behind. This forced sync ensures work and machine positions are always correct. - This behavior can be disabled through a config.h option, but it’s not recommended to do so. - Tweak: To make status reports standardized, users can no longer change what is reported via status report mask, except for only toggling machine or work positions. - All other data fields are included in the report and can only be disabled through the config.h file. It’s not recommended to alter this, because GUIs will be expecting this data to be present and may not be compatible. - Tweak: Homing cycle and parking motion no longer report a negative line number in a status report. These will now not report a line number at all. - Tweak: New `[Restoring spindle]` message when restoring from a spindle stop override. Provides feedback what Grbl is doing while the spindle is powering up and a 4.0 second delay is enforced. - Tweak: Override values are reset to 100% upon M2/30. This behavior can be disabled in config.h - Tweak: The planner buffer size has been reduced from 18 to 16 to free up RAM for tracking and controlling overrides. - Tweak: TX buffer size has been increased from 64 to 90 bytes to improve status reporting and overall performance. - Tweak: Removed the MOTION CANCEL state. It was redundant and didn’t affect Grbl’s overall operation by doing so. - Tweak: Grbl’s serial buffer increased by +1 internally, such that 128 bytes means 128, not 127 due to the ring buffer implementation. Long overdue. - Tweak: Altered sys.alarm variable to be set by alarm codes, rather than bit flags. Simplified how it worked overall. - Tweak: Planner buffer and serial RX buffer usage has been combined in the status reports. - Tweak: Pin state reporting has been refactored to report only the pins “triggered” and nothing when not “triggered”. - Tweak: Current machine rate or speed is now included in every report. - Tweak: The work coordinate offset (WCO) and override states only need to be refreshed intermittently or reported when they change. The refresh rates may be altered for each in the config.h file with different idle and busy rates to lessen Grbl’s load during a job. - Tweak: For temporary compatibility to existing GUIs until they are updated, an option to revert back to the old style status reports is available in config.h, but not recommended for long term use. - Tweak: Removed old limit pin state reporting option from config.h in lieu of new status report that includes them. - Tweak: Updated the defaults.h file to include laser mode, altered status report mask, and fix an issue with a missing invert probe pin default. - Refactor: Changed how planner line data is generated and passed to the planner and onto the step generator. By making it a struct variable, this saved significant flash space. - Refactor: Major re-factoring of the planner to incorporate override values and allow for re-calculations fast enough to immediately take effect during operation. No small feat. - Refactor: Re-factored the step segment generator for re-computing new override states. - Refactor: Re-factored spindle_control.c to accommodate the spindle speed overrides and laser mode. - Refactor: Re-factored parts of the codebase for a new jogging mode. Still under development though and slated to be part of the official v1.0 release. Hang tight. - Refactor: Created functions for computing a unit vector and value limiting based on axis maximums to free up more flash. - Refactor: The spindle PWM is now set directly inside of the stepper ISR as it loads new step segments. - Refactor: Moved machine travel checks out of soft limits function into its own since jogging uses this too. - Refactor: Removed coolant_stop() and combined with coolant_set_state(). - Refactor: The serial RX ISR forks off extended ASCII values to quickly assess the new override realtime commands. - Refactor: Altered some names of the step control flags. - Refactor: Improved efficiency of the serial RX get buffer count function. - Refactor: Saved significant flash by removing and combining print functions. Namely the uint8 base10 and base2 functions. - Refactor: Moved the probe state check in the main stepper ISR to improve its efficiency. - Refactor: Single character printPgmStrings() went converted to direct serial_write() commands to save significant flash space. - Documentation: Detailed Markdown documents on error codes, alarm codes, messages, new real-time commands, new status reports, and how jogging works. More to come later and will be posted on the Wiki as well. - Documentation: CSV files for quick importing of Grbl error and alarm codes. - Bug Fix: Applied v0.9 master fixes to CoreXY homing. - Bug Fix: The print float function would cause Grbl to crash if a value was 1e6 or greater. Increased the buffer by 3 bytes to help prevent this in the future. - Bug Fix: Build info and startup string EEPROM restoring was not writing the checksum value. - Bug Fix: Corrected an issue with safety door restoring the proper spindle and coolant state. It worked before, but breaks with laser mode that can continually change spindle state per planner block. - Bug Fix: Move system position and probe position arrays out of the system_t struct. Ran into some compiling errors that were hard to track down as to why. Moving them out fixed it.
2016-09-21 19:08:24 -06:00
#ifdef DEBUG
void report_realtime_debug();
#endif
#endif