grbl-LPC-CoreXY/grbl/motion_control.c

365 lines
18 KiB
C
Raw Normal View History

2009-01-25 00:48:56 +01:00
/*
motion_control.c - high level interface for issuing motion commands
Part of Grbl
2009-01-25 00:48:56 +01:00
Copyright (c) 2011-2015 Sungeun K. Jeon
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Simen Svale Skogsrud
2009-01-25 00:48:56 +01:00
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#include "grbl.h"
Lots of re-organization and cleaning-up. Some bug fixes. - Added a new source and header file called system. These files contain the system commands and variables, as well as all of the system headers and standard libraries Grbl uses. Centralizing some of the code. - Re-organized the include headers throughout the source code. - ENABLE_M7 define was missing from config.h. Now there. - SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No uncommenting to prevent user issues. Minimum spindle RPM now provides the lower, near 0V, scale adjustment, i.e. some spindles can go really slow so why use up our 256 voltage bins for them? - Remove some persistent variables from coolant and spindle control. They were redundant. - Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have been there. - Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing. Before we had issues with performance, no longer. - Fixed a bug with the hard limits and the software debounce feature enabled. The invert limit pin setting wasn’t honored. - Fixed a bug with the homing direction mask. Now is like it used to be. At least for now. - Re-organized main.c to serve as only as the reset/initialization routine. Makes things a little bit clearer in terms of execution procedures. - Re-organized protocol.c as the overall master control unit for execution procedures. Not quite there yet, but starting to make a little more sense in how things are run. - Removed updating of old settings records. So many new settings have been added that it’s not worth adding the code to migrate old user settings. - Tweaked spindle_control.c a bit and made it more clear and consistent with other parts of Grbl. - Tweaked the stepper disable bit code in stepper.c. Requires less flash memory.
2014-01-11 04:22:10 +01:00
// Execute linear motion in absolute millimeter coordinates. Feed rate given in millimeters/second
// unless invert_feed_rate is true. Then the feed_rate means that the motion should be completed in
// (1 minute)/feed_rate time.
// NOTE: This is the primary gateway to the grbl planner. All line motions, including arc line
// segments, must pass through this routine before being passed to the planner. The seperation of
// mc_line and plan_buffer_line is done primarily to place non-planner-type functions from being
// in the planner and to let backlash compensation or canned cycle integration simple and direct.
#ifdef USE_LINE_NUMBERS
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
void mc_line(float *target, float feed_rate, uint8_t invert_feed_rate, int32_t line_number)
#else
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
void mc_line(float *target, float feed_rate, uint8_t invert_feed_rate)
#endif
2009-01-25 00:48:56 +01:00
{
// If enabled, check for soft limit violations. Placed here all line motions are picked up
// from everywhere in Grbl.
if (bit_istrue(settings.flags,BITFLAG_SOFT_LIMIT_ENABLE)) { limits_soft_check(target); }
// If in check gcode mode, prevent motion by blocking planner. Soft limits still work.
if (sys.state == STATE_CHECK_MODE) { return; }
// NOTE: Backlash compensation may be installed here. It will need direction info to track when
// to insert a backlash line motion(s) before the intended line motion and will require its own
// plan_check_full_buffer() and check for system abort loop. Also for position reporting
// backlash steps will need to be also tracked, which will need to be kept at a system level.
// There are likely some other things that will need to be tracked as well. However, we feel
// that backlash compensation should NOT be handled by Grbl itself, because there are a myriad
// of ways to implement it and can be effective or ineffective for different CNC machines. This
// would be better handled by the interface as a post-processor task, where the original g-code
// is translated and inserts backlash motions that best suits the machine.
// NOTE: Perhaps as a middle-ground, all that needs to be sent is a flag or special command that
// indicates to Grbl what is a backlash compensation motion, so that Grbl executes the move but
// doesn't update the machine position values. Since the position values used by the g-code
// parser and planner are separate from the system machine positions, this is doable.
// If the buffer is full: good! That means we are well ahead of the robot.
// Remain in this loop until there is room in the buffer.
do {
protocol_execute_realtime(); // Check for any run-time commands
if (sys.abort) { return; } // Bail, if system abort.
if ( plan_check_full_buffer() ) { protocol_auto_cycle_start(); } // Auto-cycle start when buffer is full.
else { break; }
} while (1);
// Plan and queue motion into planner buffer
#ifdef USE_LINE_NUMBERS
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
plan_buffer_line(target, feed_rate, invert_feed_rate, line_number);
#else
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
plan_buffer_line(target, feed_rate, invert_feed_rate);
#endif
2009-01-25 00:48:56 +01:00
}
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_X defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction.
// The arc is approximated by generating a huge number of tiny, linear segments. The chordal tolerance
// of each segment is configured in settings.arc_tolerance, which is defined to be the maximum normal
// distance from segment to the circle when the end points both lie on the circle.
#ifdef USE_LINE_NUMBERS
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
void mc_arc(float *position, float *target, float *offset, float radius, float feed_rate,
uint8_t invert_feed_rate, uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t is_clockwise_arc, int32_t line_number)
#else
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
void mc_arc(float *position, float *target, float *offset, float radius, float feed_rate,
uint8_t invert_feed_rate, uint8_t axis_0, uint8_t axis_1, uint8_t axis_linear, uint8_t is_clockwise_arc)
#endif
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
{
float center_axis0 = position[axis_0] + offset[axis_0];
float center_axis1 = position[axis_1] + offset[axis_1];
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
float r_axis1 = -offset[axis_1];
float rt_axis0 = target[axis_0] - center_axis0;
float rt_axis1 = target[axis_1] - center_axis1;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
if (is_clockwise_arc) { // Correct atan2 output per direction
if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= 2*M_PI; }
} else {
if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += 2*M_PI; }
}
// NOTE: Segment end points are on the arc, which can lead to the arc diameter being smaller by up to
// (2x) settings.arc_tolerance. For 99% of users, this is just fine. If a different arc segment fit
// is desired, i.e. least-squares, midpoint on arc, just change the mm_per_arc_segment calculation.
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
// For the intended uses of Grbl, this value shouldn't exceed 2000 for the strictest of cases.
uint16_t segments = floor(fabs(0.5*angular_travel*radius)/
Lots of re-organization and cleaning-up. Some bug fixes. - Added a new source and header file called system. These files contain the system commands and variables, as well as all of the system headers and standard libraries Grbl uses. Centralizing some of the code. - Re-organized the include headers throughout the source code. - ENABLE_M7 define was missing from config.h. Now there. - SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No uncommenting to prevent user issues. Minimum spindle RPM now provides the lower, near 0V, scale adjustment, i.e. some spindles can go really slow so why use up our 256 voltage bins for them? - Remove some persistent variables from coolant and spindle control. They were redundant. - Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have been there. - Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing. Before we had issues with performance, no longer. - Fixed a bug with the hard limits and the software debounce feature enabled. The invert limit pin setting wasn’t honored. - Fixed a bug with the homing direction mask. Now is like it used to be. At least for now. - Re-organized main.c to serve as only as the reset/initialization routine. Makes things a little bit clearer in terms of execution procedures. - Re-organized protocol.c as the overall master control unit for execution procedures. Not quite there yet, but starting to make a little more sense in how things are run. - Removed updating of old settings records. So many new settings have been added that it’s not worth adding the code to migrate old user settings. - Tweaked spindle_control.c a bit and made it more clear and consistent with other parts of Grbl. - Tweaked the stepper disable bit code in stepper.c. Requires less flash memory.
2014-01-11 04:22:10 +01:00
sqrt(settings.arc_tolerance*(2*radius - settings.arc_tolerance)) );
if (segments) {
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (invert_feed_rate) { feed_rate *= segments; }
float theta_per_segment = angular_travel/segments;
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
float linear_per_segment = (target[axis_linear] - position[axis_linear])/segments;
Lots of re-organization and cleaning-up. Some bug fixes. - Added a new source and header file called system. These files contain the system commands and variables, as well as all of the system headers and standard libraries Grbl uses. Centralizing some of the code. - Re-organized the include headers throughout the source code. - ENABLE_M7 define was missing from config.h. Now there. - SPINDLE_MAX_RPM and SPINDLE_MIN_RPM now defined in config.h. No uncommenting to prevent user issues. Minimum spindle RPM now provides the lower, near 0V, scale adjustment, i.e. some spindles can go really slow so why use up our 256 voltage bins for them? - Remove some persistent variables from coolant and spindle control. They were redundant. - Removed a VARIABLE_SPINDLE define in cpu_map.h that shouldn’t have been there. - Changed the DEFAULT_ARC_TOLERANCE to 0.002mm to improve arc tracing. Before we had issues with performance, no longer. - Fixed a bug with the hard limits and the software debounce feature enabled. The invert limit pin setting wasn’t honored. - Fixed a bug with the homing direction mask. Now is like it used to be. At least for now. - Re-organized main.c to serve as only as the reset/initialization routine. Makes things a little bit clearer in terms of execution procedures. - Re-organized protocol.c as the overall master control unit for execution procedures. Not quite there yet, but starting to make a little more sense in how things are run. - Removed updating of old settings records. So many new settings have been added that it’s not worth adding the code to migrate old user settings. - Tweaked spindle_control.c a bit and made it more clear and consistent with other parts of Grbl. - Tweaked the stepper disable bit code in stepper.c. Requires less flash memory.
2014-01-11 04:22:10 +01:00
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
vector rotations. Single precision values can accumulate error greater than tool precision in rare
cases. So, exact arc path correction is implemented. This approach avoids the problem of too many very
expensive trig operations [sin(),cos(),tan()] which can take 100-200 usec each to compute.
Small angle approximation may be used to reduce computation overhead further. A third-order approximation
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
(second order sin() has too much error) holds for most, if not, all CNC applications. Note that this
approximation will begin to accumulate a numerical drift error when theta_per_segment is greater than
~0.25 rad(14 deg) AND the approximation is successively used without correction several dozen times. This
scenario is extremely unlikely, since segment lengths and theta_per_segment are automatically generated
and scaled by the arc tolerance setting. Only a very large arc tolerance setting, unrealistic for CNC
applications, would cause this numerical drift error. However, it is best to set N_ARC_CORRECTION from a
low of ~4 to a high of ~20 or so to avoid trig operations while keeping arc generation accurate.
This approximation also allows mc_arc to immediately insert a line segment into the planner
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
This is important when there are successive arc motions.
*/
// Computes: cos_T = 1 - theta_per_segment^2/2, sin_T = theta_per_segment - theta_per_segment^3/6) in ~52usec
float cos_T = 2.0 - theta_per_segment*theta_per_segment;
float sin_T = theta_per_segment*0.16666667*(cos_T + 4.0);
cos_T *= 0.5;
float sin_Ti;
float cos_Ti;
float r_axisi;
uint16_t i;
uint8_t count = 0;
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
for (i = 1; i<segments; i++) { // Increment (segments-1).
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix. ~40 usec
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
r_axis1 = r_axisi;
count++;
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
} else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. ~375 usec
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = cos(i*theta_per_segment);
sin_Ti = sin(i*theta_per_segment);
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
count = 0;
}
// Update arc_target location
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
position[axis_0] = center_axis0 + r_axis0;
position[axis_1] = center_axis1 + r_axis1;
position[axis_linear] += linear_per_segment;
#ifdef USE_LINE_NUMBERS
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
mc_line(position, feed_rate, invert_feed_rate, line_number);
#else
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
mc_line(position, feed_rate, invert_feed_rate);
#endif
// Bail mid-circle on system abort. Runtime command check already performed by mc_line.
if (sys.abort) { return; }
}
}
// Ensure last segment arrives at target location.
#ifdef USE_LINE_NUMBERS
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
mc_line(target, feed_rate, invert_feed_rate, line_number);
#else
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
mc_line(target, feed_rate, invert_feed_rate);
#endif
}
// Execute dwell in seconds.
void mc_dwell(float seconds)
{
if (sys.state == STATE_CHECK_MODE) { return; }
Major g-code parser overhaul. 100%* compliant. Other related updates. - Completely overhauled the g-code parser. It’s now 100%* compliant. (* may have some bugs). Being compliant, here are some of the major differences. - SMALLER and JUST AS FAST! A number of optimizations were found that sped things up and allowed for the more thorough error-checking to be installed without a speed hit. Trimmed a lot of ‘fat’ in the parser and still was able to make it significantly smaller than it was. - No default feed rate setting! Removed completely! This doesn’t exist in the g-code standard. So, it now errors out whenever it’s undefined for motions that require it (G1/2/3/38.2). - Any g-code parser error expunges the ENTIRE block. This means all information is lost and not passed on to the running state. Before some of the states would remain, which could have led to some problems. - If the g-code block passes all of the error-checks, the g-code state is updated and all motions are executed according to the order of execution. - Changes in spindle speed, when already running, will update the output pin accordingly. This fixes a bug, where it wouldn’t update the speed. - Update g-code parser error reporting. Errors now return detailed information of what exact went wrong. The most common errors return a short text description. For less common errors, the parser reports ‘Invalid gcode ID:20’, where 20 is a error ID. A list of error code IDs and their descriptions will be documented for user reference elsewhere to save flash space. - Other notable changes: - Added a print integer routine for uint8 variables. This saved significant flash space by switching from a heavier universal print integer routine. - Saved some flash space with our own short hypotenuse calculation - Some arc computation flash and memory optimizations.
2014-05-26 00:05:28 +02:00
uint16_t i = floor(1000/DWELL_TIME_STEP*seconds);
protocol_buffer_synchronize();
delay_ms(floor(1000*seconds-i*DWELL_TIME_STEP)); // Delay millisecond remainder.
while (i-- > 0) {
// NOTE: Check and execute realtime commands during dwell every <= DWELL_TIME_STEP milliseconds.
protocol_execute_realtime();
if (sys.abort) { return; }
_delay_ms(DWELL_TIME_STEP); // Delay DWELL_TIME_STEP increment
}
2009-01-25 00:48:56 +01:00
}
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 18:32:23 +01:00
// Perform homing cycle to locate and set machine zero. Only '$H' executes this command.
// NOTE: There should be no motions in the buffer and Grbl must be in an idle state before
// executing the homing cycle. This prevents incorrect buffered plans after homing.
void mc_homing_cycle()
{
// Check and abort homing cycle, if hard limits are already enabled. Helps prevent problems
// with machines with limits wired on both ends of travel to one limit pin.
// TODO: Move the pin-specific LIMIT_PIN call to limits.c as a function.
#ifdef LIMITS_TWO_SWITCHES_ON_AXES
uint8_t limit_state = (LIMIT_PIN & LIMIT_MASK);
if (bit_isfalse(settings.flags,BITFLAG_INVERT_LIMIT_PINS)) { limit_state ^= LIMIT_MASK; }
if (limit_state) {
mc_reset(); // Issue system reset and ensure spindle and coolant are shutdown.
bit_true_atomic(sys.rt_exec_alarm, (EXEC_ALARM_HARD_LIMIT|EXEC_CRITICAL_EVENT));
return;
}
#endif
limits_disable(); // Disable hard limits pin change register for cycle duration
// -------------------------------------------------------------------------------------
// Perform homing routine. NOTE: Special motion case. Only system reset works.
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 18:32:23 +01:00
// Search to engage all axes limit switches at faster homing seek rate.
limits_go_home(HOMING_CYCLE_0); // Homing cycle 0
#ifdef HOMING_CYCLE_1
limits_go_home(HOMING_CYCLE_1); // Homing cycle 1
#endif
#ifdef HOMING_CYCLE_2
limits_go_home(HOMING_CYCLE_2); // Homing cycle 2
#endif
protocol_execute_realtime(); // Check for reset and set system abort.
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
if (sys.abort) { return; } // Did not complete. Alarm state set by mc_alarm.
// Homing cycle complete! Setup system for normal operation.
// -------------------------------------------------------------------------------------
// Gcode parser position was circumvented by the limits_go_home() routine, so sync position now.
gc_sync_position();
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
// If hard limits feature enabled, re-enable hard limits pin change register after homing cycle.
limits_init();
}
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
// Perform tool length probe cycle. Requires probe switch.
// NOTE: Upon probe failure, the program will be stopped and placed into ALARM state.
#ifdef USE_LINE_NUMBERS
void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate, uint8_t is_probe_away,
uint8_t is_no_error, int32_t line_number)
#else
void mc_probe_cycle(float *target, float feed_rate, uint8_t invert_feed_rate, uint8_t is_probe_away,
uint8_t is_no_error)
#endif
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
{
// TODO: Need to update this cycle so it obeys a non-auto cycle start.
if (sys.state == STATE_CHECK_MODE) { return; }
// Finish all queued commands and empty planner buffer before starting probe cycle.
protocol_buffer_synchronize();
// Initialize probing control variables
sys.probe_succeeded = false; // Re-initialize probe history before beginning cycle.
probe_configure_invert_mask(is_probe_away);
// After syncing, check if probe is already triggered. If so, halt and issue alarm.
// NOTE: This probe initialization error applies to all probing cycles.
if ( probe_get_state() ) { // Check probe pin state.
bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_PROBE_FAIL);
protocol_execute_realtime();
}
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
if (sys.abort) { return; } // Return if system reset has been issued.
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
// Setup and queue probing motion. Auto cycle-start should not start the cycle.
#ifdef USE_LINE_NUMBERS
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
mc_line(target, feed_rate, invert_feed_rate, line_number);
#else
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
mc_line(target, feed_rate, invert_feed_rate);
#endif
// Activate the probing state monitor in the stepper module.
sys.probe_state = PROBE_ACTIVE;
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
// Perform probing cycle. Wait here until probe is triggered or motion completes.
bit_true_atomic(sys.rt_exec_state, EXEC_CYCLE_START);
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
do {
protocol_execute_realtime();
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
if (sys.abort) { return; } // Check for system abort
} while (sys.state != STATE_IDLE);
// Probing cycle complete!
// Set state variables and error out, if the probe failed and cycle with error is enabled.
if (sys.probe_state == PROBE_ACTIVE) {
if (is_no_error) { memcpy(sys.probe_position, sys.position, sizeof(float)*N_AXIS); }
else { bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_PROBE_FAIL); }
} else {
sys.probe_succeeded = true; // Indicate to system the probing cycle completed successfully.
}
sys.probe_state = PROBE_OFF; // Ensure probe state monitor is disabled.
protocol_execute_realtime(); // Check and execute run-time commands
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
if (sys.abort) { return; } // Check for system abort
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
// Reset the stepper and planner buffers to remove the remainder of the probe motion.
st_reset(); // Reest step segment buffer.
plan_reset(); // Reset planner buffer. Zero planner positions. Ensure probing motion is cleared.
plan_sync_position(); // Sync planner position to current machine position.
// TODO: Update the g-code parser code to not require this target calculation but uses a gc_sync_position() call.
// NOTE: The target[] variable updated here will be sent back and synced with the g-code parser.
system_convert_array_steps_to_mpos(target, sys.position);
Settings refactoring. Bug fixes. Misc new features. This is likely the last major change to the v0.9 code base before push to master. Only two minor things remain on the agenda (CoreXY support, force clear EEPROM, and an extremely low federate bug). - NEW! Grbl is now compile-able and may be flashed directly through the Arduino IDE. Only minor changes were required for this compatibility. See the Wiki to learn how to do it. - New status reporting mask to turn on and off what Grbl sends back. This includes machine coordinates, work coordinates, serial RX buffer usage, and planner buffer usage. Expandable to more information on user request, but that’s it for now. - Settings have been completely renumbered to allow for future new settings to be installed without having to constantly reshuffle and renumber all of the settings every time. - All settings masks have been standardized to mean bit 0 = X, bit 1 = Y, and bit 2 = Z, to reduce confusion on how they work. The invert masks used by the internal Grbl system were updated to accommodate this change as well. - New invert probe pin setting, which does what it sounds like. - Fixed a probing cycle bug, where it would freeze intermittently, and removed some redundant code. - Homing may now be set to the origin wherever the limit switches are. Traditionally machine coordinates should always be in negative space, but when limit switches on are on the opposite side, the machine coordinate would be set to -max_travel for the axis. Now you can always make it [0,0,0] via a compile-time option in config.h. (Soft limits routine was updated to account for this as well.) - Probe coordinate message immediately after a probing cycle may now be turned off via a compile-time option in config.h. By default the probing location is always reported. - Reduced the N_ARC_CORRECTION default value to reflect the changes in how circles are generated by an arc tolerance, rather than a fixed arc segment setting. - Increased the incoming line buffer limit from 70 to 80 characters. Had some extra memory space to invest into this. - Fixed a bug where tool number T was not being tracked and reported correctly. - Added a print free memory function for debugging purposes. Not used otherwise. - Realtime rate report should now work during feed holds, but it hasn’t been tested yet. - Updated the streaming scripts with MIT-license and added the simple streaming to the main stream.py script to allow for settings to be sent. - Some minor code refactoring to improve flash efficiency. Reduced the flash by several hundred KB, which was re-invested in some of these new features.
2014-07-26 23:01:34 +02:00
#ifdef MESSAGE_PROBE_COORDINATES
// All done! Output the probe position as message.
report_probe_parameters();
#endif
}
G38.2 probe feature rough draft installed. Working but needs testing. - G38.2 straight probe now supported. Rough draft. May be tweaked more as testing ramps up. - G38.2 requires at least one axis word. Multiple axis words work too. When commanded, the probe cycle will move at the last ‘F’ feed rate specified in a straight line. - During a probe cycle: If the probe pin goes low (normal high), Grbl will record that immediate position and engage a feed hold. Meaning that the CNC machine will move a little past the probe switch point, so keep federates low to stop sooner. Once stopped, Grbl will issue a move to go back to the recorded probe trigger point. - During a probe cycle: If the probe switch does not engage by the time the machine has traveled to its target coordinates, Grbl will issue an ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe without error isn’t supported, but would be easy to implement later.) - After a successful probe, Grbl will send a feedback message containing the recorded probe coordinates in the machine coordinate system. This is as the g-code standard on probe parameters specifies. - The recorded probe parameters are retained in Grbl memory and can be viewed with the ‘$#’ print parameters command. Upon a power-cycle, not a soft-reset, Grbl will re-zero these values. - Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses EEPROM to fetch the coordinate system offsets. - Updated the Grbl version to v0.9d. - The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
// Method to ready the system to reset by setting the realtime reset command and killing any
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
// active processes in the system. This also checks if a system reset is issued while Grbl
// is in a motion state. If so, kills the steppers and sets the system alarm to flag position
// lost, since there was an abrupt uncontrolled deceleration. Called at an interrupt level by
// realtime abort command and hard limits. So, keep to a minimum.
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
void mc_reset()
{
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
// Only this function can set the system reset. Helps prevent multiple kill calls.
if (bit_isfalse(sys.rt_exec_state, EXEC_RESET)) {
bit_true_atomic(sys.rt_exec_state, EXEC_RESET);
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
// Kill spindle and coolant.
spindle_stop();
coolant_stop();
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
// Kill steppers only if in any motion state, i.e. cycle, actively holding, or homing.
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
// NOTE: If steppers are kept enabled via the step idle delay setting, this also keeps
// the steppers enabled by avoiding the go_idle call altogether, unless the motion state is
// violated, by which, all bets are off.
if ((sys.state & (STATE_CYCLE | STATE_HOMING)) || (sys.suspend == SUSPEND_ENABLE_HOLD)) {
if (sys.state == STATE_HOMING) { bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_HOMING_FAIL); }
else { bit_true_atomic(sys.rt_exec_alarm, EXEC_ALARM_ABORT_CYCLE); }
st_go_idle(); // Force kill steppers. Position has likely been lost.
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
}
}
}