grbl-LPC-CoreXY/nuts_bolts.h

115 lines
4.7 KiB
C
Raw Normal View History

2009-01-25 00:48:56 +01:00
/*
2012-01-18 04:50:53 +01:00
nuts_bolts.h - Header file for shared definitions, variables, and functions
2009-01-25 00:48:56 +01:00
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2012 Sungeun K. Jeon
2009-01-25 00:48:56 +01:00
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef nuts_bolts_h
#define nuts_bolts_h
2009-01-25 00:48:56 +01:00
#include <string.h>
2012-01-18 04:50:53 +01:00
#include <stdint.h>
#include <stdbool.h>
#include "config.h"
#include "defaults.h"
2009-01-25 00:48:56 +01:00
2012-01-18 04:50:53 +01:00
#define false 0
#define true 1
2009-01-25 00:48:56 +01:00
#define N_AXIS 3 // Number of axes
#define X_AXIS 0 // Axis indexing value
2009-01-25 00:48:56 +01:00
#define Y_AXIS 1
#define Z_AXIS 2
#define MM_PER_INCH (25.40)
#define INCH_PER_MM (0.0393701)
// Useful macros
2011-02-11 23:53:58 +01:00
#define clear_vector(a) memset(a, 0, sizeof(a))
#define clear_vector_float(a) memset(a, 0.0, sizeof(float)*N_AXIS)
2011-02-11 23:53:58 +01:00
#define max(a,b) (((a) > (b)) ? (a) : (b))
2012-01-18 04:50:53 +01:00
#define min(a,b) (((a) < (b)) ? (a) : (b))
// Bit field and masking macros
#define bit(n) (1 << n)
#define bit_true(x,mask) (x |= mask)
#define bit_false(x,mask) (x &= ~mask)
#define bit_toggle(x,mask) (x ^= mask)
#define bit_istrue(x,mask) ((x & mask) != 0)
#define bit_isfalse(x,mask) ((x & mask) == 0)
// Define system executor bit map. Used internally by runtime protocol as runtime command flags,
// which notifies the main program to execute the specified runtime command asynchronously.
// NOTE: The system executor uses an unsigned 8-bit volatile variable (8 flag limit.) The default
// flags are always false, so the runtime protocol only needs to check for a non-zero value to
// know when there is a runtime command to execute.
#define EXEC_STATUS_REPORT bit(0) // bitmask 00000001
#define EXEC_CYCLE_START bit(1) // bitmask 00000010
#define EXEC_CYCLE_STOP bit(2) // bitmask 00000100
#define EXEC_FEED_HOLD bit(3) // bitmask 00001000
#define EXEC_RESET bit(4) // bitmask 00010000
#define EXEC_ALARM bit(5) // bitmask 00100000
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
#define EXEC_CRIT_EVENT bit(6) // bitmask 01000000
// #define bit(7) // bitmask 10000000
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 18:32:23 +01:00
// Define system state bit map. The state variable primarily tracks the individual functions
// of Grbl to manage each without overlapping. It is also used as a messaging flag for
// critical events.
#define STATE_IDLE 0 // Must be zero.
#define STATE_INIT 1 // Initial power up state.
#define STATE_QUEUED 2 // Indicates buffered blocks, awaiting cycle start.
#define STATE_CYCLE 3 // Cycle is running
#define STATE_HOLD 4 // Executing feed hold
#define STATE_HOMING 5 // Performing homing cycle
#define STATE_ALARM 6 // In alarm state. Locks out all g-code processes. Allows settings access.
#define STATE_CHECK_MODE 7 // G-code check mode. Locks out planner and motion only.
// #define STATE_JOG 8 // Jogging mode is unique like homing.
// Define global system variables
typedef struct {
uint8_t abort; // System abort flag. Forces exit back to main loop for reset.
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 18:32:23 +01:00
uint8_t state; // Tracks the current state of Grbl.
volatile uint8_t execute; // Global system runtime executor bitflag variable. See EXEC bitmasks.
Re-factored system states and alarm management. Serial baud support greater than 57600. - Refactored system states to be more clear and concise. Alarm locks processes when position is unknown to indicate to user something has gone wrong. - Changed mc_alarm to mc_reset, which now manages the system reset function. Centralizes it. - Renamed '$X' kill homing lock to kill alarm lock. - Created an alarm error reporting method to clear up what is an alarm: message vs a status error: message. For GUIs mainly. Alarm codes are negative. Status codes are positive. - Serial baud support upto 115200. Previous baudrate calc was unstable for 57600 and above. - Alarm state locks out all g-code blocks, including startup scripts, but allows user to access settings and internal commands. For example, to disable hard limits, if they are problematic. - Hard limits do not respond in an alarm state. - Fixed a problem with the hard limit interrupt during the homing cycle. The interrupt register is still active during the homing cycle and still signal the interrupt to trigger when re-enabled. Instead, just disabled the register. - Homing rate adjusted. All axes move at homing seek rate, regardless of how many axes move at the same time. This is unlike how the stepper module does it as a point to point rate. - New config.h settings to disable the homing rate adjustment and the force homing upon powerup. - Reduced the number of startup lines back down to 2 from 3. This discourages users from placing motion block in there, which can be very dangerous. - Startup blocks now run only after an alarm-free reset or after a homing cycle. Does not run when $X kill is called. For satefy reasons
2012-11-15 01:36:29 +01:00
int32_t position[N_AXIS]; // Real-time machine (aka home) position vector in steps.
// NOTE: This may need to be a volatile variable, if problems arise.
New startup script setting. New dry run, check gcode switches. New system state variable. Lots of reorganizing. (All v0.8 features installed. Still likely buggy, but now thourough testing will need to start to squash them all. As soon as we're done, this will be pushed to master and v0.9 development will be started. Please report ANY issues to us so we can get this rolled out ASAP.) - User startup script! A user can now save one (up to 5 as compile-time option) block of g-code in EEPROM memory. This will be run everytime Grbl resets. Mainly to be used as a way to set your preferences, like G21, G54, etc. - New dry run and check g-code switches. Dry run moves ALL motions at rapids rate ignoring spindle, coolant, and dwell commands. For rapid physical proofing of your code. The check g-code switch ignores all motion and provides the user a way to check if there are any errors in their program that Grbl may not like. - Program restart! (sort of). Program restart is typically an advanced feature that allows users to restart a program mid-stream. The check g-code switch can perform this feature by enabling the switch at the start of the program, and disabling it at the desired point with some minimal changes. - New system state variable. This state variable tracks all of the different state processes that Grbl performs, i.e. cycle start, feed hold, homing, etc. This is mainly for making managing of these task easier and more clear. - Position lost state variable. Only when homing is enabled, Grbl will refuse to move until homing is completed and position is known. This is mainly for safety. Otherwise, it will let users fend for themselves. - Moved the default settings defines into config.h. The plan is to eventually create a set of config.h's for particular as-built machines to help users from doing it themselves. - Moved around misc defines into .h files. And lots of other little things.
2012-11-03 18:32:23 +01:00
uint8_t auto_start; // Planner auto-start flag. Toggled off during feed hold. Defaulted by settings.
} system_t;
extern system_t sys;
2012-01-18 04:50:53 +01:00
// Read a floating point value from a string. Line points to the input buffer, char_counter
// is the indexer pointing to the current character of the line, while float_ptr is
2012-01-18 04:50:53 +01:00
// a pointer to the result variable. Returns true when it succeeds
int read_float(char *line, uint8_t *char_counter, float *float_ptr);
// Delays variable-defined milliseconds. Compiler compatibility fix for _delay_ms().
void delay_ms(uint16_t ms);
// Delays variable-defined microseconds. Compiler compatibility fix for _delay_us().
void delay_us(uint32_t us);
// Syncs Grbl's gcode and planner position variables with the system position.
void sys_sync_current_position();
2011-02-11 23:53:58 +01:00
// Delays variable-defined milliseconds. Compiler compatibility fix for _delay_ms().
void delay_ms(uint16_t ms);
// Delays variable-defined microseconds. Compiler compatibility fix for _delay_us().
void delay_us(uint16_t us);
2009-01-25 00:48:56 +01:00
#endif