628 lines
15 KiB
C
Raw Normal View History

2017-01-09 18:47:25 -05:00
/*
LPCUSB, an USB device driver for LPC microcontrollers
Copyright (C) 2006 Bertrik Sikken (bertrik@sikken.nl)
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
USB hardware layer
*/
// CodeRed - include the LPCUSB type.h file rather than NXP one directly
//#include "type.h"
#include "lpcusb_type.h"
#include "usbdebug.h"
#include "usbhw_lpc.h"
#include "usbapi.h"
// Configure LED pin functions
//
// LED pin functions
//
// Function Pin Port Bits Pin Select Register
// ------------------- --- ----- ---- -------------------
// P2.0 GPIO Port 2.0 xx P2.0 1:0 PINSEL4
// P2.1 GPIO Port 2.1 xx P2.1 3:2 PINSEL4
// P2.2 GPIO Port 2.2 xx P2.2 5:4 PINSEL4
// P2.3 GPIO Port 2.3 xx P2.3 7:6 PINSEL4
// P2.4 GPIO Port 2.4 xx P2.4 9:8 PINSEL4
// P2.5 GPIO Port 2.5 xx P2.5 11:10 PINSEL4
// P2.6 GPIO Port 2.6 xx P2.6 13:12 PINSEL4
// P2.7 GPIO Port 2.7 xx P2.7 15:14 PINSEL4
//
// OFF - LED state 0
// ON - LED state 1
//
// '*' as GPIO
#define NO_LEDS 8
#define LED_0 (1 << 0)
#define LED_1 (1 << 1)
#define LED_2 (1 << 2)
#define LED_3 (1 << 3)
#define LED_4 (1 << 4)
#define LED_5 (1 << 5)
#define LED_6 (1 << 6)
#define LED_7 (1 << 7)
#ifdef DEBUG
// comment out the following line if you don't want to use debug LEDs
//#define DEBUG_LED
#endif
#ifdef DEBUG_LED
#define DEBUG_LED_ON(x) FIO2SET = (1 << x);
#define DEBUG_LED_OFF(x) FIO2CLR = (1 << x);
#define DEBUG_LED_INIT(x) PINSEL2 &= ~(0x3 << (2*x)); FIO2DIR |= (1 << x); DEBUG_LED_OFF(x);
#else
#define DEBUG_LED_INIT(x) /**< LED initialisation macro */
#define DEBUG_LED_ON(x) /**< turn LED on */
#define DEBUG_LED_OFF(x) /**< turn LED off */
#endif
/** Installed device interrupt handler */
static TFnDevIntHandler *_pfnDevIntHandler = NULL;
/** Installed endpoint interrupt handlers */
static TFnEPIntHandler *_apfnEPIntHandlers[16];
/** Installed frame interrupt handlers */
static TFnFrameHandler *_pfnFrameHandler = NULL;
/** convert from endpoint address to endpoint index */
#define EP2IDX(bEP) ((((bEP)&0xF)<<1)|(((bEP)&0x80)>>7))
/** convert from endpoint index to endpoint address */
#define IDX2EP(idx) ((((idx)<<7)&0x80)|(((idx)>>1)&0xF))
/**
Local function to wait for a device interrupt (and clear it)
@param [in] dwIntr Bitmask of interrupts to wait for
*/
static void Wait4DevInt(U32 dwIntr)
{
// wait for specific interrupt
while ((LPC_USB->USBDevIntSt & dwIntr) != dwIntr);
// clear the interrupt bits
LPC_USB->USBDevIntClr = dwIntr;
}
/**
Local function to send a command to the USB protocol engine
@param [in] bCmd Command to send
*/
static void USBHwCmd(U8 bCmd)
{
// clear CDFULL/CCEMTY
LPC_USB->USBDevIntClr = CDFULL | CCEMTY;
// write command code
LPC_USB->USBCmdCode = 0x00000500 | (bCmd << 16);
Wait4DevInt(CCEMTY);
}
/**
Local function to send a command + data to the USB protocol engine
@param [in] bCmd Command to send
@param [in] bData Data to send
*/
static void USBHwCmdWrite(U8 bCmd, U16 bData)
{
// write command code
USBHwCmd(bCmd);
// write command data
LPC_USB->USBCmdCode = 0x00000100 | (bData << 16);
Wait4DevInt(CCEMTY);
}
/**
Local function to send a command to the USB protocol engine and read data
@param [in] bCmd Command to send
@return the data
*/
static U8 USBHwCmdRead(U8 bCmd)
{
// write command code
USBHwCmd(bCmd);
// get data
LPC_USB->USBCmdCode = 0x00000200 | (bCmd << 16);
Wait4DevInt(CDFULL);
return LPC_USB->USBCmdData;
}
/**
'Realizes' an endpoint, meaning that buffer space is reserved for
it. An endpoint needs to be realised before it can be used.
From experiments, it appears that a USB reset causes USBReEP to
re-initialise to 3 (= just the control endpoints).
However, a USB bus reset does not disturb the USBMaxPSize settings.
@param [in] idx Endpoint index
@param [in] wMaxPSize Maximum packet size for this endpoint
*/
static void USBHwEPRealize(int idx, U16 wMaxPSize)
{
LPC_USB->USBReEP |= (1 << idx);
LPC_USB->USBEpInd = idx;
LPC_USB->USBMaxPSize = wMaxPSize;
Wait4DevInt(EP_RLZED);
}
/**
Enables or disables an endpoint
@param [in] idx Endpoint index
@param [in] fEnable TRUE to enable, FALSE to disable
*/
static void USBHwEPEnable(int idx, BOOL fEnable)
{
USBHwCmdWrite(CMD_EP_SET_STATUS | idx, fEnable ? 0 : EP_DA);
}
/**
Configures an endpoint and enables it
@param [in] bEP Endpoint number
@param [in] wMaxPacketSize Maximum packet size for this EP
*/
void USBHwEPConfig(U8 bEP, U16 wMaxPacketSize)
{
int idx;
idx = EP2IDX(bEP);
// realise EP
USBHwEPRealize(idx, wMaxPacketSize);
// enable EP
USBHwEPEnable(idx, TRUE);
}
/**
Registers an endpoint event callback
@param [in] bEP Endpoint number
@param [in] pfnHandler Callback function
*/
void USBHwRegisterEPIntHandler(U8 bEP, TFnEPIntHandler *pfnHandler)
{
int idx;
idx = EP2IDX(bEP);
ASSERT(idx<32);
/* add handler to list of EP handlers */
_apfnEPIntHandlers[idx / 2] = pfnHandler;
/* enable EP interrupt */
LPC_USB->USBEpIntEn |= (1 << idx);
LPC_USB->USBDevIntEn |= EP_SLOW;
DBG("Registered handler for EP 0x%x\n", bEP);
}
/**
Registers an device status callback
@param [in] pfnHandler Callback function
*/
void USBHwRegisterDevIntHandler(TFnDevIntHandler *pfnHandler)
{
_pfnDevIntHandler = pfnHandler;
// enable device interrupt
LPC_USB->USBDevIntEn |= DEV_STAT;
DBG("Registered handler for device status\n");
}
/**
Registers the frame callback
@param [in] pfnHandler Callback function
*/
void USBHwRegisterFrameHandler(TFnFrameHandler *pfnHandler)
{
_pfnFrameHandler = pfnHandler;
// enable device interrupt
LPC_USB->USBDevIntEn |= FRAME;
DBG("Registered handler for frame\n");
}
/**
Sets the USB address.
@param [in] bAddr Device address to set
*/
void USBHwSetAddress(U8 bAddr)
{
USBHwCmdWrite(CMD_DEV_SET_ADDRESS, DEV_EN | bAddr);
}
/**
Connects or disconnects from the USB bus
@param [in] fConnect If TRUE, connect, otherwise disconnect
*/
void USBHwConnect(BOOL fConnect)
{
USBHwCmdWrite(CMD_DEV_STATUS, fConnect ? CON : 0);
}
/**
Enables interrupt on NAK condition
For IN endpoints a NAK is generated when the host wants to read data
from the device, but none is available in the endpoint buffer.
For OUT endpoints a NAK is generated when the host wants to write data
to the device, but the endpoint buffer is still full.
The endpoint interrupt handlers can distinguish regular (ACK) interrupts
from NAK interrupt by checking the bits in their bEPStatus argument.
@param [in] bIntBits Bitmap indicating which NAK interrupts to enable
*/
void USBHwNakIntEnable(U8 bIntBits)
{
USBHwCmdWrite(CMD_DEV_SET_MODE, bIntBits);
}
/**
Gets the status from a specific endpoint.
@param [in] bEP Endpoint number
@return Endpoint status byte (containing EP_STATUS_xxx bits)
*/
U8 USBHwEPGetStatus(U8 bEP)
{
int idx = EP2IDX(bEP);
return USBHwCmdRead(CMD_EP_SELECT | idx);
}
/**
Sets the stalled property of an endpoint
@param [in] bEP Endpoint number
@param [in] fStall TRUE to stall, FALSE to unstall
*/
void USBHwEPStall(U8 bEP, BOOL fStall)
{
int idx = EP2IDX(bEP);
USBHwCmdWrite(CMD_EP_SET_STATUS | idx, fStall ? EP_ST : 0);
}
/**
Writes data to an endpoint buffer
@param [in] bEP Endpoint number
@param [in] pbBuf Endpoint data
@param [in] iLen Number of bytes to write
@return TRUE if the data was successfully written or <0 in case of error.
*/
int USBHwEPWrite(U8 bEP, U8 *pbBuf, int iLen)
{
int idx;
idx = EP2IDX(bEP);
// set write enable for specific endpoint
LPC_USB->USBCtrl = WR_EN | ((bEP & 0xF) << 2);
// set packet length
LPC_USB->USBTxPLen = iLen;
// write data
while (LPC_USB->USBCtrl & WR_EN) {
LPC_USB->USBTxData = (pbBuf[3] << 24) | (pbBuf[2] << 16) | (pbBuf[1] << 8) | pbBuf[0];
pbBuf += 4;
}
// select endpoint and validate buffer
USBHwCmd(CMD_EP_SELECT | idx);
USBHwCmd(CMD_EP_VALIDATE_BUFFER);
return iLen;
}
/**
Reads data from an endpoint buffer
@param [in] bEP Endpoint number
@param [in] pbBuf Endpoint data
@param [in] iMaxLen Maximum number of bytes to read
@return the number of bytes available in the EP (possibly more than iMaxLen),
or <0 in case of error.
*/
int USBHwEPRead(U8 bEP, U8 *pbBuf, int iMaxLen)
{
int i, idx;
U32 dwData, dwLen;
idx = EP2IDX(bEP);
// set read enable bit for specific endpoint
LPC_USB->USBCtrl = RD_EN | ((bEP & 0xF) << 2);
// wait for PKT_RDY
do {
dwLen = LPC_USB->USBRxPLen;
} while ((dwLen & PKT_RDY) == 0);
// packet valid?
if ((dwLen & DV) == 0) {
return -1;
}
// get length
dwLen &= PKT_LNGTH_MASK;
// get data
dwData = 0;
for (i = 0; i < (int)dwLen; i++) {
if ((i % 4) == 0) {
dwData = LPC_USB->USBRxData;
}
if ((pbBuf != NULL) && (i < iMaxLen)) {
pbBuf[i] = dwData & 0xFF;
}
dwData >>= 8;
}
// make sure RD_EN is clear
LPC_USB->USBCtrl = 0;
// select endpoint and clear buffer
USBHwCmd(CMD_EP_SELECT | idx);
USBHwCmd(CMD_EP_CLEAR_BUFFER);
return dwLen;
}
/**
Sets the 'configured' state.
All registered endpoints are 'realised' and enabled, and the
'configured' bit is set in the device status register.
@param [in] fConfigured If TRUE, configure device, else unconfigure
*/
void USBHwConfigDevice(BOOL fConfigured)
{
// set configured bit
USBHwCmdWrite(CMD_DEV_CONFIG, fConfigured ? CONF_DEVICE : 0);
}
/**
USB interrupt handler
@todo Get all 11 bits of frame number instead of just 8
Endpoint interrupts are mapped to the slow interrupt
*/
void USBHwISR(void)
{
U32 dwStatus;
U32 dwIntBit;
U8 bEPStat, bDevStat, bStat;
int i;
U16 wFrame;
// LED9 monitors total time in interrupt routine
DEBUG_LED_ON(6);
// handle device interrupts
dwStatus = LPC_USB->USBDevIntSt;
// frame interrupt
if (dwStatus & FRAME) {
// clear int
LPC_USB->USBDevIntClr = FRAME;
// call handler
if (_pfnFrameHandler != NULL) {
wFrame = USBHwCmdRead(CMD_DEV_READ_CUR_FRAME_NR);
_pfnFrameHandler(wFrame);
}
}
// device status interrupt
if (dwStatus & DEV_STAT) {
/* Clear DEV_STAT interrupt before reading DEV_STAT register.
This prevents corrupted device status reads, see
LPC2148 User manual revision 2, 25 july 2006.
*/
LPC_USB->USBDevIntClr = DEV_STAT;
bDevStat = USBHwCmdRead(CMD_DEV_STATUS);
if (bDevStat & (CON_CH | SUS_CH | RST)) {
// convert device status into something HW independent
bStat = ((bDevStat & CON) ? DEV_STATUS_CONNECT : 0) |
((bDevStat & SUS) ? DEV_STATUS_SUSPEND : 0) |
((bDevStat & RST) ? DEV_STATUS_RESET : 0);
// call handler
if (_pfnDevIntHandler != NULL) {
DEBUG_LED_ON(5);
_pfnDevIntHandler(bStat);
DEBUG_LED_OFF(5);
}
}
}
// endpoint interrupt
if (dwStatus & EP_SLOW) {
// clear EP_SLOW
LPC_USB->USBDevIntClr = EP_SLOW;
// check all endpoints
for (i = 0; i < 32; i++) {
dwIntBit = (1 << i);
if (LPC_USB->USBEpIntSt & dwIntBit) {
// clear int (and retrieve status)
LPC_USB->USBEpIntClr = dwIntBit;
Wait4DevInt(CDFULL);
bEPStat = LPC_USB->USBCmdData;
// convert EP pipe stat into something HW independent
bStat = ((bEPStat & EPSTAT_FE) ? EP_STATUS_DATA : 0) |
((bEPStat & EPSTAT_ST) ? EP_STATUS_STALLED : 0) |
((bEPStat & EPSTAT_STP) ? EP_STATUS_SETUP : 0) |
((bEPStat & EPSTAT_EPN) ? EP_STATUS_NACKED : 0) |
((bEPStat & EPSTAT_PO) ? EP_STATUS_ERROR : 0);
// call handler
if (_apfnEPIntHandlers[i / 2] != NULL) {
DEBUG_LED_ON(7);
_apfnEPIntHandlers[i / 2](IDX2EP(i), bStat);
DEBUG_LED_OFF(7);
}
}
}
}
DEBUG_LED_OFF(6);
}
/**
Initialises the USB hardware
This function assumes that the hardware is connected as shown in
section 10.1 of the LPC2148 data sheet:
* P0.31 controls a switch to connect a 1.5k pull-up to D+ if low.
* P0.23 is connected to USB VCC.
Embedded artists board: make sure to disconnect P0.23 LED as it
acts as a pull-up and so prevents detection of USB disconnect.
@return TRUE if the hardware was successfully initialised
*/
BOOL USBHwInit(void)
{
/* CodeRed - comment out original code
*
// configure P0.23 for Vbus sense
PINSEL1 = (PINSEL1 & ~(3 << 14)) | (1 << 14); // P0.23
// configure P0.31 for CONNECT
PINSEL1 = (PINSEL1 & ~(3 << 30)) | (2 << 30); // P0.31
*/
// CodeRed - set up USB pins
// P2.9 -> USB_CONNECT
LPC_PINCON->PINSEL4 &= ~0x000C0000;
LPC_PINCON->PINSEL4 |= 0x00040000;
// P1.18 -> USB_UP_LED
// P1.30 -> VBUS
LPC_PINCON->PINSEL3 &= ~0x30000030;
LPC_PINCON->PINSEL3 |= 0x20000010;
// P0.29 -> USB_D+
// P0.30 -> USB_D-
LPC_PINCON->PINSEL1 &= ~0x3C000000;
LPC_PINCON->PINSEL1 |= 0x14000000;
// enable PUSB
LPC_SC->PCONP |= (1 << 31);
/* CodeRed - Comment out original PLL code
* PLL now set up by NXP code in target.c within example projects
*
// initialise PLL
PLL1CON = 1; // enable PLL
PLL1CFG = (1 << 5) | 3; // P = 2, M = 4
PLL1FEED = 0xAA;
PLL1FEED = 0x55;
while ((PLL1STAT & (1 << 10)) == 0);
PLL1CON = 3; // enable and connect
PLL1FEED = 0xAA;
PLL1FEED = 0x55;
*/
// AWB added USB clock enable
// These are actually the USBClkCtrl and USBClkSt registers
// OTG_CLK_CTRL = 0x12; /* Dev clock, AHB clock enable */
// while ((OTG_CLK_STAT & 0x12) != 0x12);
LPC_USB->USBClkCtrl = 0x1A; /* Dev clock, AHB clock enable */
while ((LPC_USB->USBClkSt & 0x1A) != 0x1A);
// disable/clear all interrupts for now
LPC_USB->USBDevIntEn = 0;
LPC_USB->USBDevIntClr = 0xFFFFFFFF;
LPC_USB->USBDevIntPri = 0;
LPC_USB->USBEpIntEn = 0;
LPC_USB->USBEpIntClr = 0xFFFFFFFF;
LPC_USB->USBEpIntPri = 0;
// by default, only ACKs generate interrupts
USBHwNakIntEnable(0);
// CodeRed - commented out LEDs - not used by current port
// init debug leds
/*
DEBUG_LED_INIT(5);
DEBUG_LED_INIT(6);
DEBUG_LED_INIT(7);
*/
return TRUE;
}