grbl-LPC-CoreXY/gcode.c

309 lines
10 KiB
C
Raw Normal View History

2009-01-25 00:48:56 +01:00
/*
gcode.c - rs274/ngc parser.
Part of Grbl
Copyright (c) 2009 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* This code is inspired by the Arduino GCode Interpreter by Mike Ellery and the NIST RS274/NGC Interpreter
by Kramer, Proctor and Messina. */
/* Intentionally not supported:
- Canned cycles
- Tool radius compensatino
- A,B,C-axes
- Multiple coordinate systems
- Evaluation of expressions
- Variables
- Multiple home locations
- Probing
- Spindle direction
- Override control
*/
/*
Omitted for the time being:
group 0 = {G10, G28, G30, G53, G92, G92.1, G92.2, G92.3} (Non modal G-codes)
group 5 = {G93, G94} feed rate mode
group 12 = {G54, G55, G56, G57, G58, G59, G59.1, G59.2, G59.3} coordinate system selection
group 13 = {G61, G61.1, G64} path control mode
group 4 = {M0, M1, M2, M30, M60} stopping
group 8 = {M7, M8, M9} coolant (special case: M7 and M8 may be active at the same time)
group 9 = {M48, M49} enable/disable feed and speed override switches
*/
#include "gcode.h"
#include <stdlib.h>
#include <string.h>
#include "nuts_bolts.h"
#include <math.h>
#include "config.h"
#include "motion_control.h"
#include "spindle_control.h"
#define NEXT_ACTION_DEFAULT 0
#define NEXT_ACTION_DWELL 1
#define NEXT_ACTION_GO_HOME 2
#define MOTION_MODE_RAPID_LINEAR 0 // G0
#define MOTION_MODE_LINEAR 1 // G1
#define MOTION_MODE_CW_ARC 2 // G2
#define MOTION_MODE_CCW_ARC 3 // G3
#define MOTION_MODE_CANCEL 4 // G80
#define PLANE_XY 0; // G17
#define PLANE_XZ 1; // G18
#define PLANE_YZ 2; // G19
#define PATH_CONTROL_MODE_EXACT_PATH 0
#define PATH_CONTROL_MODE_EXACT_STOP 1
#define PATH_CONTROL_MODE_CONTINOUS 2
#define PROGRAM_FLOW_RUNNING 0
#define PROGRAM_FLOW_PAUSED 1
#define PROGRAM_FLOW_COMPLETED 2
#define SPINDLE_DIRECTION_CW 0
#define SPINDLE_DIRECTION_CCW 1
// Using packed bit fields saves a "lot" of invaluable SRAM, but bumps the compiled size of this unit
// by 100 bytes. If we get tight on code space, consider using byte aligned values again.
struct ParserState {
uint32_t line_number;
uint8_t status_code:5;
uint8_t motion_mode:3; /* {G0, G1, G2, G3, G38.2, G80, G81, G82, G83, G84, G85, G86, G87, G88, G89} */
uint8_t inverse_feed_rate_mode:1; /* G93, G94 */
uint8_t plane:2; /* {G17, G18, G19} */
uint8_t inches_mode:1; /* 0 = millimeter mode, 1 = inches mode {G20, G21} */
uint8_t program_flow:2;
int spindle_direction:2;
double feed_rate; /* Millimeters/second */
double logical_position[3]; /* Where the interpreter considers the tool to be at this point in the code */
uint8_t tool;
int16_t spindle_speed; /* RPM/100 */
};
struct ParserState state;
#define FAIL(status) state.status_code = status;
int read_double(char *line, //!< string: line of RS274/NGC code being processed
int *counter, //!< pointer to a counter for logical_position on the line
double *double_ptr); //!< pointer to double to be read
int next_statement(char *letter, double *double_ptr, char *line, int *counter);
void gc_init() {
memset(&state, 0, sizeof(state));
state.feed_rate = DEFAULT_FEEDRATE;
}
inline float to_millimeters(double value) {
return(state.inches_mode ? value * INCHES_PER_MM : value);
}
// Executes one line of 0-terminated G-Code. The line is assumed to contain only uppercase
// characters and signed floats (no whitespace).
uint8_t gc_execute_line(char *line) {
int counter;
char letter;
double value;
double unit_converted_value;
double inverse_feed_rate;
uint8_t absolute_mode = 0; /* 0 = relative motion, 1 = absolute motion {G90, G91} */
uint8_t next_action = NEXT_ACTION_DEFAULT; /* One of the NEXT_ACTION_-constants */
double target[3], offset[3];
double p, r;
int int_value, axis;
state.line_number++;
state.status_code = GCSTATUS_OK;
/* First: parse all statements */
if (line[0] == '(') { return(state.status_code); }
if (line[0] == '/') { counter++; } // ignore block delete
// Pass 1: Commands
while(next_statement(&letter, &value, line, &counter)) {
int_value = trunc(value);
switch(letter) {
case 'G':
switch(int_value) {
case 0: state.motion_mode = MOTION_MODE_RAPID_LINEAR; break;
case 1: state.motion_mode = MOTION_MODE_LINEAR; break;
case 2: state.motion_mode = MOTION_MODE_CW_ARC; break;
case 3: state.motion_mode = MOTION_MODE_CCW_ARC; break;
case 4: next_action = NEXT_ACTION_DWELL; break;
case 17: state.plane = PLANE_XY; break;
case 18: state.plane = PLANE_XZ; break;
case 19: state.plane = PLANE_YZ; break;
case 20: state.inches_mode = true; break;
case 21: state.inches_mode = false; break;
case 28: case 30: next_action = NEXT_ACTION_GO_HOME; break;
case 53: absolute_mode = 1; break;
case 80: state.motion_mode = MOTION_MODE_CANCEL; break;
case 93: state.inverse_feed_rate_mode = true; break;
case 94: state.inverse_feed_rate_mode = false; break;
default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
}
break;
case 'M':
switch(int_value) {
case 0: case 1: state.program_flow = PROGRAM_FLOW_PAUSED; break;
case 2: state.program_flow = PROGRAM_FLOW_COMPLETED; break;
case 3: state.spindle_direction = 1; break;
case 4: state.spindle_direction = -1; break;
case 5: state.spindle_direction = 0; break;
default: FAIL(GCSTATUS_UNSUPPORTED_STATEMENT);
}
break;
case 'T': state.tool = trunc(value); break;
}
if(state.status_code) { break; }
}
// If there were any errors parsing this line, we will return right away with the bad news
if (state.status_code) { return(state.status_code); }
// Pass 2: Parameters
counter = 0;
clear_vector(offset);
while(next_statement(&letter, &value, line, &counter)) {
int_value = trunc(value);
unit_converted_value = to_millimeters(value);
switch(letter) {
case 'F':
if (state.inverse_feed_rate_mode) {
inverse_feed_rate = unit_converted_value; // seconds per motion for this motion only
} else {
state.feed_rate = unit_converted_value; // millimeters pr second
}
break;
case 'I': case 'J': case 'K': offset[letter-'I'] = unit_converted_value; break;
case 'P': p = value; break;
case 'R': r = unit_converted_value; break;
case 'S': state.spindle_speed = value; break;
case 'X': case 'Y': case 'Z':
axis = letter - 'X';
if (absolute_mode) {
target[axis] = unit_converted_value;
} else {
target[axis] = state.logical_position[axis]+unit_converted_value;
};
break;
}
}
// Update spindle state
if (state.spindle_direction) {
spindle_run(state.spindle_direction, state.spindle_speed);
} else {
spindle_stop();
}
// Perform any physical actions
switch (next_action) {
case NEXT_ACTION_GO_HOME: mc_go_home(); break;
case NEXT_ACTION_DWELL: mc_dwell(trunc(p*1000)); break;
case NEXT_ACTION_DEFAULT:
switch (state.motion_mode) {
case MOTION_MODE_CANCEL: break;
case MOTION_MODE_RAPID_LINEAR: case MOTION_MODE_LINEAR:
if (inverse_feed_rate) {
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
inverse_feed_rate, true);
} else {
mc_linear_motion(target[X_AXIS], target[Y_AXIS], target[Z_AXIS],
(state.motion_mode == MOTION_MODE_LINEAR) ? state.feed_rate : RAPID_FEEDRATE,
false);
}
break;
case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC:
// to be implemented
break;
}
}
mc_execute();
// As far as the parser is concerned, the logical_position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
memcpy(state.logical_position, target, sizeof(state.logical_position));
return(state.status_code);
}
void gc_get_status(double *position, uint8_t *status_code, int *inches_mode, uint32_t *line_number)
{
int axis;
if (state.inches_mode) {
for(axis = X_AXIS; axis <= Z_AXIS; axis++) {
position[axis] = state.logical_position[axis]*INCHES_PER_MM;
}
} else {
memcpy(position, state.logical_position, sizeof(position));
}
*status_code = state.status_code;
*inches_mode = state.inches_mode;
*line_number = state.line_number;
}
// Parses the next statement and leaves the counter on the first character following
// the statement. Returns 1 if there was a statements, 0 if end of string was reached
// or there was an error (check state.status_code).
int next_statement(char *letter, double *double_ptr, char *line, int *counter) {
if (*line == 0) {
return(0); // No more statements
}
*letter = *line;
if((*letter < 'A') || (*letter > 'Z')) {
FAIL(GCSTATUS_EXPECTED_COMMAND_LETTER);
return(0);
}
*counter++;
if (!read_double(line, counter, double_ptr)) {
return(0);
};
return(1);
}
int read_double(char *line, //!< string: line of RS274/NGC code being processed
int *counter, //!< pointer to a counter for position on the line
double *double_ptr) //!< pointer to double to be read
{
char *start = line + *counter;
char *end;
*double_ptr = strtod(start, &end);
if(end == start) {
FAIL(GCSTATUS_BAD_NUMBER_FORMAT);
return(0);
};
*counter = end - line;
return(1);
}