grbl-LPC-CoreXY/config.h

175 lines
9.5 KiB
C
Raw Normal View History

/*
config.h - compile time configuration
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011-2012 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef config_h
#define config_h
// IMPORTANT: Any changes here requires a full re-compiling of the source code to propagate them.
#define BAUD_RATE 9600
// Define pin-assignments
#define STEPPING_DDR DDRD
#define STEPPING_PORT PORTD
#define X_STEP_BIT 2 // Uno Digital Pin 2
#define Y_STEP_BIT 3 // Uno Digital Pin 3
#define Z_STEP_BIT 4 // Uno Digital Pin 4
#define X_DIRECTION_BIT 5 // Uno Digital Pin 5
#define Y_DIRECTION_BIT 6 // Uno Digital Pin 6
#define Z_DIRECTION_BIT 7 // Uno Digital Pin 7
#define STEPPERS_DISABLE_DDR DDRB
#define STEPPERS_DISABLE_PORT PORTB
#define STEPPERS_DISABLE_BIT 0 // Uno Digital Pin 8
#define LIMIT_DDR DDRB
#define LIMIT_PIN PINB
#define LIMIT_PORT PORTB
#define X_LIMIT_BIT 1 // Uno Digital Pin 9
#define Y_LIMIT_BIT 2 // Uno Digital Pin 10
#define Z_LIMIT_BIT 3 // Uno Digital Pin 11
#define LIMIT_INT PCIE0 // Pin change interrupt enable pin
#define LIMIT_INT_vect PCINT0_vect
#define LIMIT_PCMSK PCMSK0 // Pin change interrupt register
#define SPINDLE_ENABLE_DDR DDRB
#define SPINDLE_ENABLE_PORT PORTB
#define SPINDLE_ENABLE_BIT 4 // Uno Digital Pin 12
#define SPINDLE_DIRECTION_DDR DDRB
#define SPINDLE_DIRECTION_PORT PORTB
#define SPINDLE_DIRECTION_BIT 5 // Uno Digital Pin 13
#define COOLANT_FLOOD_DDR DDRC
#define COOLANT_FLOOD_PORT PORTC
#define COOLANT_FLOOD_BIT 0 // Uno Analog Pin 0
// #define ENABLE_M7 // Mist coolant disabled by default. Uncomment to enable.
#ifdef ENABLE_M7
#define COOLANT_MIST_DDR DDRC
#define COOLANT_MIST_PORT PORTC
#define COOLANT_MIST_BIT 1 // Uno Analog Pin 1
#endif
// Define runtime command special characters. These characters are 'picked-off' directly from the
// serial read data stream and are not passed to the grbl line execution parser. Select characters
// that do not and must not exist in the streamed g-code program. ASCII control characters may be
// used, if they are available per user setup. Also, extended ASCII codes (>127), which are never in
// g-code programs, maybe selected for interface programs.
// TODO: Solidify these default characters. Temporary for now.
#define CMD_STATUS_REPORT '?'
#define CMD_FEED_HOLD '!'
#define CMD_CYCLE_START '~'
#define CMD_RESET 0x18 // ctrl-x
// Specifies the number of work coordinate systems grbl will support (G54 - G59).
// This parameter must be one or greater, currently supporting up to a value of 6.
#define N_COORDINATE_SYSTEM 1
// The temporal resolution of the acceleration management subsystem. Higher number give smoother
// acceleration but may impact performance.
// NOTE: Increasing this parameter will help any resolution related issues, especially with machines
// requiring very high accelerations and/or very fast feedrates. In general, this will reduce the
// error between how the planner plans the motions and how the stepper program actually performs them.
// However, at some point, the resolution can be high enough, where the errors related to numerical
// round-off can be great enough to cause problems and/or it's too fast for the Arduino. The correct
// value for this parameter is machine dependent, so it's advised to set this only as high as needed.
// Approximate successful values can range from 30L to 100L or more.
#define ACCELERATION_TICKS_PER_SECOND 60L
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.0 // (mm/min)
// Minimum stepper rate. Sets the absolute minimum stepper rate in the stepper program and never runs
// slower than this value, except when sleeping. This parameter overrides the minimum planner speed.
// This is primarily used to guarantee that the end of a movement is always reached and not stop to
// never reach its target. This parameter should always be greater than zero.
#define MINIMUM_STEPS_PER_MINUTE 800 // (steps/min) - Integer value only
// Number of arc generation iterations by small angle approximation before exact arc trajectory
// correction. This parameter maybe decreased if there are issues with the accuracy of the arc
// generations. In general, the default value is more than enough for the intended CNC applications
// of grbl, and should be on the order or greater than the size of the buffer to help with the
// computational efficiency of generating arcs.
#define N_ARC_CORRECTION 25 // Integer (1-255)
// Time delay increments performed during a dwell. The default value is set at 50ms, which provides
// a maximum time delay of roughly 55 minutes, more than enough for most any application. Increasing
// this delay will increase the maximum dwell time linearly, but also reduces the responsiveness of
// run-time command executions, like status reports, since these are performed between each dwell
// time step. Also, keep in mind that the Arduino delay timer is not very accurate for long delays.
#define DWELL_TIME_STEP 50 // Integer (1-255) (milliseconds)
// Number of homing cycles performed after when the machine initially jogs to limit switches.
// This help in preventing overshoot and should improve repeatability. This value should be one or
// greater.
#define N_HOMING_CYCLE 2 // Integer (1-128)
// ---------------------------------------------------------------------------------------
// FOR ADVANCED USERS ONLY:
// Toggles XON/XOFF software flow control for serial communications. Not officially supported
// due to problems involving the Atmega8U2 USB-to-serial chips on current Arduinos. The firmware
// on these chips do not support XON/XOFF flow control characters and the intermediate buffer
// in the chips cause latency and overflow problems with standard terminal programs. However,
// using specifically-programmed UI's to manage this latency problem has been confirmed to work.
// As well as, older FTDI FT232RL-based Arduinos(Duemilanove) are known to work with standard
// terminal programs since their firmware correctly manage these XON/XOFF characters. In any
// case, please report any successes to grbl administrators!
// #define ENABLE_XONXOFF // Default disabled. Uncomment to enable.
// Creates a delay between the direction pin setting and corresponding step pulse by creating
// another interrupt (Timer2 compare) to manage it. The main Grbl interrupt (Timer1 compare)
// sets the direction pins, and does not immediately set the stepper pins, as it would in
// normal operation. The Timer2 compare fires next to set the stepper pins after the step
// pulse delay time, and Timer2 overflow will complete the step pulse, except now delayed
// by the step pulse time plus the step pulse delay. (Thanks langwadt for the idea!)
// This is an experimental feature that should only be used if your setup requires a longer
// delay between direction and step pin settings (some opto coupler based drivers), as it may
// adversely effect Grbl's high-end performance (>10kHz). Please notify Grbl administrators
// of your successes or difficulties, as we will monitor this and possibly integrate this as a
// standard feature for future releases. However, we suggest to first try our direction delay
// hack/solution posted in the Wiki involving inverting the stepper pin mask.
// NOTE: Uncomment to enable. The recommended delay should be > 3us and the total step pulse
// time, which includes the Grbl settings pulse microseconds, should not exceed 127us.
// #define STEP_PULSE_DELAY 5 // Step pulse delay in microseconds. Default disabled.
// ---------------------------------------------------------------------------------------
// TODO: The following options are set as compile-time options for now, until the next EEPROM
// settings version has solidified. This is to prevent having to support dozens of different
// incremental settings versions.
#define BLOCK_DELETE_ENABLE 0 // Block delete enable/disable flag during g-code parsing
// This parameter sets the delay time before disabling the steppers after the final block of movement.
// A short delay ensures the steppers come to a complete stop and the residual inertial force in the
// CNC axes don't cause the axes to drift off position. This is particularly important when manually
// entering g-code into grbl, i.e. locating part zero or simple manual machining. If the axes drift,
// grbl has no way to know this has happened, since stepper motors are open-loop control. Depending
// on the machine, this parameter may need to be larger or smaller than the default time.
// NOTE: If the define commented, the stepper lock will be disabled upon compiling.
// -> NOW INSTALLED IN SETTINGS #define STEPPER_IDLE_LOCK_TIME 25 // (milliseconds) - Integer > 0
#endif