2014-01-11 04:22:10 +01:00
|
|
|
/*
|
|
|
|
system.c - Handles system level commands and real-time processes
|
|
|
|
Part of Grbl
|
|
|
|
|
|
|
|
Copyright (c) 2014 Sungeun K. Jeon
|
|
|
|
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "system.h"
|
|
|
|
#include "settings.h"
|
|
|
|
#include "gcode.h"
|
|
|
|
#include "motion_control.h"
|
|
|
|
#include "report.h"
|
|
|
|
#include "print.h"
|
|
|
|
|
|
|
|
|
|
|
|
void system_init()
|
|
|
|
{
|
2014-02-09 18:46:34 +01:00
|
|
|
PINOUT_DDR &= ~(PINOUT_MASK); // Configure as input pins
|
2014-01-11 04:22:10 +01:00
|
|
|
PINOUT_PORT |= PINOUT_MASK; // Enable internal pull-up resistors. Normal high operation.
|
|
|
|
PINOUT_PCMSK |= PINOUT_MASK; // Enable specific pins of the Pin Change Interrupt
|
|
|
|
PCICR |= (1 << PINOUT_INT); // Enable Pin Change Interrupt
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Pin change interrupt for pin-out commands, i.e. cycle start, feed hold, and reset. Sets
|
|
|
|
// only the runtime command execute variable to have the main program execute these when
|
|
|
|
// its ready. This works exactly like the character-based runtime commands when picked off
|
|
|
|
// directly from the incoming serial data stream.
|
|
|
|
ISR(PINOUT_INT_vect)
|
|
|
|
{
|
|
|
|
// Enter only if any pinout pin is actively low.
|
|
|
|
if ((PINOUT_PIN & PINOUT_MASK) ^ PINOUT_MASK) {
|
|
|
|
if (bit_isfalse(PINOUT_PIN,bit(PIN_RESET))) {
|
|
|
|
mc_reset();
|
|
|
|
} else if (bit_isfalse(PINOUT_PIN,bit(PIN_FEED_HOLD))) {
|
|
|
|
sys.execute |= EXEC_FEED_HOLD;
|
|
|
|
} else if (bit_isfalse(PINOUT_PIN,bit(PIN_CYCLE_START))) {
|
|
|
|
sys.execute |= EXEC_CYCLE_START;
|
G38.2 probe feature rough draft installed. Working but needs testing.
- G38.2 straight probe now supported. Rough draft. May be tweaked more
as testing ramps up.
- G38.2 requires at least one axis word. Multiple axis words work too.
When commanded, the probe cycle will move at the last ‘F’ feed rate
specified in a straight line.
- During a probe cycle: If the probe pin goes low (normal high), Grbl
will record that immediate position and engage a feed hold. Meaning
that the CNC machine will move a little past the probe switch point, so
keep federates low to stop sooner. Once stopped, Grbl will issue a move
to go back to the recorded probe trigger point.
- During a probe cycle: If the probe switch does not engage by the time
the machine has traveled to its target coordinates, Grbl will issue an
ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe
without error isn’t supported, but would be easy to implement later.)
- After a successful probe, Grbl will send a feedback message
containing the recorded probe coordinates in the machine coordinate
system. This is as the g-code standard on probe parameters specifies.
- The recorded probe parameters are retained in Grbl memory and can be
viewed with the ‘$#’ print parameters command. Upon a power-cycle, not
a soft-reset, Grbl will re-zero these values.
- Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses
EEPROM to fetch the coordinate system offsets.
- Updated the Grbl version to v0.9d.
- The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
|
|
|
}
|
2014-01-11 04:22:10 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Executes user startup script, if stored.
|
|
|
|
void system_execute_startup(char *line)
|
|
|
|
{
|
|
|
|
uint8_t n;
|
|
|
|
for (n=0; n < N_STARTUP_LINE; n++) {
|
|
|
|
if (!(settings_read_startup_line(n, line))) {
|
|
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
|
|
} else {
|
|
|
|
if (line[0] != 0) {
|
|
|
|
printString(line); // Echo startup line to indicate execution.
|
|
|
|
report_status_message(gc_execute_line(line));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Directs and executes one line of formatted input from protocol_process. While mostly
|
|
|
|
// incoming streaming g-code blocks, this also executes Grbl internal commands, such as
|
|
|
|
// settings, initiating the homing cycle, and toggling switch states. This differs from
|
|
|
|
// the runtime command module by being susceptible to when Grbl is ready to execute the
|
|
|
|
// next line during a cycle, so for switches like block delete, the switch only effects
|
|
|
|
// the lines that are processed afterward, not necessarily real-time during a cycle,
|
|
|
|
// since there are motions already stored in the buffer. However, this 'lag' should not
|
|
|
|
// be an issue, since these commands are not typically used during a cycle.
|
|
|
|
uint8_t system_execute_line(char *line)
|
|
|
|
{
|
|
|
|
uint8_t char_counter = 1;
|
|
|
|
uint8_t helper_var = 0; // Helper variable
|
|
|
|
float parameter, value;
|
|
|
|
switch( line[char_counter] ) {
|
2014-02-09 18:46:34 +01:00
|
|
|
case 0 : report_grbl_help(); break;
|
2014-01-11 04:22:10 +01:00
|
|
|
case 'G' : // Prints gcode parser state
|
|
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
else { report_gcode_modes(); }
|
G38.2 probe feature rough draft installed. Working but needs testing.
- G38.2 straight probe now supported. Rough draft. May be tweaked more
as testing ramps up.
- G38.2 requires at least one axis word. Multiple axis words work too.
When commanded, the probe cycle will move at the last ‘F’ feed rate
specified in a straight line.
- During a probe cycle: If the probe pin goes low (normal high), Grbl
will record that immediate position and engage a feed hold. Meaning
that the CNC machine will move a little past the probe switch point, so
keep federates low to stop sooner. Once stopped, Grbl will issue a move
to go back to the recorded probe trigger point.
- During a probe cycle: If the probe switch does not engage by the time
the machine has traveled to its target coordinates, Grbl will issue an
ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe
without error isn’t supported, but would be easy to implement later.)
- After a successful probe, Grbl will send a feedback message
containing the recorded probe coordinates in the machine coordinate
system. This is as the g-code standard on probe parameters specifies.
- The recorded probe parameters are retained in Grbl memory and can be
viewed with the ‘$#’ print parameters command. Upon a power-cycle, not
a soft-reset, Grbl will re-zero these values.
- Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses
EEPROM to fetch the coordinate system offsets.
- Updated the Grbl version to v0.9d.
- The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
|
|
|
break;
|
2014-02-09 18:46:34 +01:00
|
|
|
case 'C' : // Set check g-code mode [IDLE/CHECK]
|
|
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
// Perform reset when toggling off. Check g-code mode should only work if Grbl
|
|
|
|
// is idle and ready, regardless of alarm locks. This is mainly to keep things
|
|
|
|
// simple and consistent.
|
|
|
|
if ( sys.state == STATE_CHECK_MODE ) {
|
|
|
|
mc_reset();
|
|
|
|
report_feedback_message(MESSAGE_DISABLED);
|
|
|
|
} else {
|
|
|
|
if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode.
|
|
|
|
sys.state = STATE_CHECK_MODE;
|
|
|
|
report_feedback_message(MESSAGE_ENABLED);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 'X' : // Disable alarm lock [ALARM]
|
|
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
if (sys.state == STATE_ALARM) {
|
|
|
|
report_feedback_message(MESSAGE_ALARM_UNLOCK);
|
|
|
|
sys.state = STATE_IDLE;
|
|
|
|
// Don't run startup script. Prevents stored moves in startup from causing accidents.
|
|
|
|
} // Otherwise, no effect.
|
|
|
|
break;
|
|
|
|
// case 'J' : break; // Jogging methods
|
2014-01-11 04:22:10 +01:00
|
|
|
// TODO: Here jogging can be placed for execution as a seperate subprogram. It does not need to be
|
|
|
|
// susceptible to other runtime commands except for e-stop. The jogging function is intended to
|
|
|
|
// be a basic toggle on/off with controlled acceleration and deceleration to prevent skipped
|
|
|
|
// steps. The user would supply the desired feedrate, axis to move, and direction. Toggle on would
|
|
|
|
// start motion and toggle off would initiate a deceleration to stop. One could 'feather' the
|
|
|
|
// motion by repeatedly toggling to slow the motion to the desired location. Location data would
|
|
|
|
// need to be updated real-time and supplied to the user through status queries.
|
|
|
|
// More controlled exact motions can be taken care of by inputting G0 or G1 commands, which are
|
|
|
|
// handled by the planner. It would be possible for the jog subprogram to insert blocks into the
|
|
|
|
// block buffer without having the planner plan them. It would need to manage de/ac-celerations
|
|
|
|
// on its own carefully. This approach could be effective and possibly size/memory efficient.
|
|
|
|
default :
|
|
|
|
// Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing)
|
|
|
|
if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); }
|
|
|
|
switch( line[char_counter] ) {
|
2014-02-09 18:46:34 +01:00
|
|
|
case '$' : // Prints Grbl settings [IDLE/ALARM]
|
2014-01-11 04:22:10 +01:00
|
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
else { report_grbl_settings(); }
|
|
|
|
break;
|
G38.2 probe feature rough draft installed. Working but needs testing.
- G38.2 straight probe now supported. Rough draft. May be tweaked more
as testing ramps up.
- G38.2 requires at least one axis word. Multiple axis words work too.
When commanded, the probe cycle will move at the last ‘F’ feed rate
specified in a straight line.
- During a probe cycle: If the probe pin goes low (normal high), Grbl
will record that immediate position and engage a feed hold. Meaning
that the CNC machine will move a little past the probe switch point, so
keep federates low to stop sooner. Once stopped, Grbl will issue a move
to go back to the recorded probe trigger point.
- During a probe cycle: If the probe switch does not engage by the time
the machine has traveled to its target coordinates, Grbl will issue an
ALARM and the user will be forced to reset Grbl. (Currently G38.3 probe
without error isn’t supported, but would be easy to implement later.)
- After a successful probe, Grbl will send a feedback message
containing the recorded probe coordinates in the machine coordinate
system. This is as the g-code standard on probe parameters specifies.
- The recorded probe parameters are retained in Grbl memory and can be
viewed with the ‘$#’ print parameters command. Upon a power-cycle, not
a soft-reset, Grbl will re-zero these values.
- Moved ‘$#’ command to require IDLE or ALARM mode, because it accesses
EEPROM to fetch the coordinate system offsets.
- Updated the Grbl version to v0.9d.
- The probe cycle is subject to change upon testing or user-feedback.
2014-03-01 06:03:26 +01:00
|
|
|
case '#' : // Print Grbl NGC parameters
|
|
|
|
if ( line[++char_counter] != 0 ) { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
else { report_ngc_parameters(); }
|
|
|
|
break;
|
2014-02-09 18:46:34 +01:00
|
|
|
case 'H' : // Perform homing cycle [IDLE/ALARM]
|
2014-01-11 04:22:10 +01:00
|
|
|
if (bit_istrue(settings.flags,BITFLAG_HOMING_ENABLE)) {
|
|
|
|
// Only perform homing if Grbl is idle or lost.
|
|
|
|
mc_homing_cycle();
|
|
|
|
if (!sys.abort) { system_execute_startup(line); } // Execute startup scripts after successful homing.
|
|
|
|
} else { return(STATUS_SETTING_DISABLED); }
|
|
|
|
break;
|
2014-02-09 18:46:34 +01:00
|
|
|
case 'I' : // Print or store build info. [IDLE/ALARM]
|
2014-01-11 04:22:10 +01:00
|
|
|
if ( line[++char_counter] == 0 ) {
|
|
|
|
if (!(settings_read_build_info(line))) {
|
|
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
|
|
} else {
|
|
|
|
report_build_info(line);
|
|
|
|
}
|
2014-02-19 15:21:40 +01:00
|
|
|
} else { // Store startup line [IDLE/ALARM]
|
2014-01-11 04:22:10 +01:00
|
|
|
if(line[char_counter++] != '=') { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
helper_var = char_counter; // Set helper variable as counter to start of user info line.
|
|
|
|
do {
|
|
|
|
line[char_counter-helper_var] = line[char_counter];
|
|
|
|
} while (line[char_counter++] != 0);
|
|
|
|
settings_store_build_info(line);
|
|
|
|
}
|
|
|
|
break;
|
2014-02-09 18:46:34 +01:00
|
|
|
case 'N' : // Startup lines. [IDLE/ALARM]
|
2014-01-11 04:22:10 +01:00
|
|
|
if ( line[++char_counter] == 0 ) { // Print startup lines
|
|
|
|
for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) {
|
|
|
|
if (!(settings_read_startup_line(helper_var, line))) {
|
|
|
|
report_status_message(STATUS_SETTING_READ_FAIL);
|
|
|
|
} else {
|
|
|
|
report_startup_line(helper_var,line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2014-02-19 15:21:40 +01:00
|
|
|
} else { // Store startup line [IDLE Only] Prevents motion during ALARM.
|
2014-02-09 18:46:34 +01:00
|
|
|
if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle.
|
2014-01-11 04:22:10 +01:00
|
|
|
helper_var = true; // Set helper_var to flag storing method.
|
|
|
|
// No break. Continues into default: to read remaining command characters.
|
|
|
|
}
|
2014-02-09 18:46:34 +01:00
|
|
|
default : // Storing setting methods [IDLE/ALARM]
|
2014-01-11 04:22:10 +01:00
|
|
|
if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
|
|
|
if(line[char_counter++] != '=') { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
if (helper_var) { // Store startup line
|
|
|
|
// Prepare sending gcode block to gcode parser by shifting all characters
|
|
|
|
helper_var = char_counter; // Set helper variable as counter to start of gcode block
|
|
|
|
do {
|
|
|
|
line[char_counter-helper_var] = line[char_counter];
|
|
|
|
} while (line[char_counter++] != 0);
|
|
|
|
// Execute gcode block to ensure block is valid.
|
|
|
|
helper_var = gc_execute_line(line); // Set helper_var to returned status code.
|
|
|
|
if (helper_var) { return(helper_var); }
|
|
|
|
else {
|
|
|
|
helper_var = trunc(parameter); // Set helper_var to int value of parameter
|
|
|
|
settings_store_startup_line(helper_var,line);
|
|
|
|
}
|
|
|
|
} else { // Store global setting.
|
|
|
|
if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); }
|
|
|
|
if(line[char_counter] != 0) { return(STATUS_UNSUPPORTED_STATEMENT); }
|
|
|
|
return(settings_store_global_setting(parameter, value));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return(STATUS_OK); // If '$' command makes it to here, then everything's ok.
|
|
|
|
}
|