esp8266-nanoleaf-webserver/esp8266-nanoleaf-webserver.ino
Lorenz Nimmervoll 8d6eafe8bf
Merge pull request #29 from WarDrake/mDNS
Adding mDNS ability to the webserver to avoid looking for the ip
2020-04-11 10:28:16 +02:00

1636 lines
47 KiB
C++

/*
ESP8266 FastLED WebServer: https://github.com/jasoncoon/esp8266-fastled-webserver
Copyright (C) 2015-2018 Jason Coon
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define FASTLED_INTERRUPT_RETRY_COUNT 0
#include <FastLED.h>
FASTLED_USING_NAMESPACE
extern "C" {
#include "user_interface.h"
}
#include <ESP8266WiFi.h>
#include <ESP8266WebServer.h>
#include <ESP8266HTTPUpdateServer.h>
#include <FS.h>
#include <EEPROM.h>
#include "GradientPalettes.h"
#include "Field.h"
#include <ESP8266mDNS.h> //Enable mDNS availability
/*######################## MAIN CONFIG ########################*/
#define DATA_PIN D4 // Should be GPIO02 on other boards like the NodeMCU
#define LED_TYPE WS2812B // You might also use a WS2811 or any other strip that is fastled compatible
#define COLOR_ORDER GRB // Change this if colors are swapped (in my case, red was swapped with green)
#define MILLI_AMPS 5000 // IMPORTANT: set the max milli-Amps of your power supply (4A = 4000mA)
#define VOLTS 5 // Voltage of the Power Supply
#define LEAFCOUNT 12 // Amount of triangles
#define PIXELS_PER_LEAF 12 // Amount of LEDs inside 1x Tringle
const bool apMode = false; // set to true if the esp8266 should open an access point
//#define SOUND_REACTIVE // Uncomment to enable the Sound reactive mode
#define SOUND_SENSOR_PIN A0 // An Analog sensor should be connected to an analog pin
#define SENSOR_TYPE 1 // 0: Dumb Sensors, 1: MAX4466 Sound Sensor, 2: MAX9814 Sound Sensor
#define HOSTNAME "Nanoleafs" // Name that appears in your network
#define CORRECTION UncorrectedColor // If colors are weird use TypicalLEDStrip
#define RANDOM_AUTOPLAY_PATTERN // if enabled the next pattern for autoplay is choosen at random,
// if commented out patterns will play in order
#define ENABLE_ALEXA_SUPPORT // Espalexa library required
/*######################## MAIN CONFIG END ####################*/
/*############ Alexa Configuration ############*/
/* This part configures the devices that can be detected,
* by your Amazon Alexa device. In order to Connect the device,
* open http://ip_of_the_esp8266/alexa in your browser.
* Afterwards tell say "Alexa, discover devices" to your device,
* after around 30 seconds it should respond with the new devices
* it has detected.
*
* In order to be able to control mutliple parameters of the nanoleafs,
* the code creates multiple devices.
*
* To add those extra devices remove the two "//" in front of the,
* defines below.
*/
#ifdef ENABLE_ALEXA_SUPPORT
#define ALEXA_DEVICE_NAME "Nanoleafs"
#define AddAutoplayDevice "Nanoleafs Autoplay"
#define AddStrobeDevice "Nanoleafs Strobe"
#define AddSpecificPatternDevice "Nanoleafs Party"
#ifdef AddSpecificPatternDevice
#define SpecificPattern 1 // Parameter defines what pattern gets executed
#endif
#endif // ENABLE_ALEXA_SUPPORT
/*########## Alexa Configuration END ##########*/
ESP8266WebServer webServer(80);
//WebSocketsServer webSocketsServer = WebSocketsServer(81);
ESP8266HTTPUpdateServer httpUpdateServer;
#include "FSBrowser.h"
#define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0]))
#define NUM_LEDS (PIXELS_PER_LEAF * LEAFCOUNT)
#define FRAMES_PER_SECOND 120 // here you can control the speed. With the Access Point / Web Server the animations run a bit slower.
#define SOUND_REACTIVE_FPS 120
#include "Secrets.h" // this file is intentionally not included in the sketch, so nobody accidentally commits their secret information.
// create a Secrets.h file with the following:
// AP mode password
// const char WiFiAPPSK[] = "your-password";
// Wi-Fi network to connect to (if not in AP mode)
// char* ssid = "your-ssid";
// char* password = "your-password";
#ifdef ENABLE_ALEXA_SUPPORT
#include <Espalexa.h>
void mainAlexaEvent(EspalexaDevice*);
Espalexa espalexa;
ESP8266WebServer webServer2(80);
EspalexaDevice* alexa_main;
#endif // ENABLE_ALEXA_SUPPORT
CRGB leds[NUM_LEDS];
const uint8_t brightnessCount = 5;
uint8_t brightnessMap[brightnessCount] = { 5, 32, 64, 128, 255 };
uint8_t brightnessIndex = 0;
char vals[4 + LEAFCOUNT * 5][4] = { "" };
uint8_t breathe = 0; // value for starting custom pattern
uint8_t breathe_dir = 1; // 1== rising
char cpattern[500] = "";
uint8_t allLeafs = 1; // Sets if all leafs should get the same color
uint8_t selectedLeaf = 1; // Sets position of leaf to color
// ten seconds per color palette makes a good demo
// 20-120 is better for deployment
uint8_t secondsPerPalette = 10;
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
uint8_t cooling = 3;
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
uint8_t sparking = 50;
uint8_t speed = 70;
///////////////////////////////////////////////////////////////////////
// Forward declarations of an array of cpt-city gradient palettes, and
// a count of how many there are. The actual color palette definitions
// are at the bottom of this file.
extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
uint8_t gCurrentPaletteNumber = 0;
CRGBPalette16 gCurrentPalette(CRGB::Black);
CRGBPalette16 gTargetPalette(gGradientPalettes[0]);
CRGBPalette16 IceColors_p = CRGBPalette16(CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
uint8_t currentPatternIndex = 0; // Index number of which pattern is current
uint8_t autoplay = 0;
uint8_t autoplayDuration = 10;
unsigned long autoPlayTimeout = 0;
uint8_t currentPaletteIndex = 0;
uint8_t gHue = 0; // rotating "base color" used by many of the patterns
CRGB solidColor = CRGB::Blue;
// scale the brightness of all pixels down
void dimAll(byte value)
{
for (int i = 0; i < NUM_LEDS; i++) {
leds[i].nscale8(value);
}
}
typedef void(*Pattern)();
typedef Pattern PatternList[];
typedef struct {
Pattern pattern;
String name;
} PatternAndName;
typedef PatternAndName PatternAndNameList[];
#include "Twinkles.h"
#include "TwinkleFOX.h"
// List of patterns to cycle through. Each is defined as a separate function below.
PatternAndNameList patterns = {
{ pride, "Pride" },
{ colorWaves, "Color Waves" },
{ rainbow, "Horizontal Rainbow" },
{ rainbowSolid, "Solid Rainbow" },
{ confetti, "Confetti" },
{ sinelon, "Sinelon" },
{ bpm, "Beat" },
{ juggle, "Juggle" },
{ fire, "Fire" },
{ water, "Water" },
{ strobe, "Strobe"},
{ rainbow_strobe, "Rainbow Strobe"},
// twinkle patterns
{ rainbowTwinkles, "Rainbow Twinkles" },
{ snowTwinkles, "Snow Twinkles" },
{ cloudTwinkles, "Cloud Twinkles" },
{ incandescentTwinkles, "Incandescent Twinkles" },
// TwinkleFOX patterns
{ retroC9Twinkles, "Retro C9 Twinkles" },
{ redWhiteTwinkles, "Red & White Twinkles" },
{ blueWhiteTwinkles, "Blue & White Twinkles" },
{ redGreenWhiteTwinkles, "Red, Green & White Twinkles" },
{ fairyLightTwinkles, "Fairy Light Twinkles" },
{ snow2Twinkles, "Snow 2 Twinkles" },
{ hollyTwinkles, "Holly Twinkles" },
{ iceTwinkles, "Ice Twinkles" },
{ partyTwinkles, "Party Twinkles" },
{ forestTwinkles, "Forest Twinkles" },
{ lavaTwinkles, "Lava Twinkles" },
{ fireTwinkles, "Fire Twinkles" },
{ cloud2Twinkles, "Cloud 2 Twinkles" },
{ oceanTwinkles, "Ocean Twinkles" },
{ showSolidColor, "Solid Color" }
};
const uint8_t patternCount = ARRAY_SIZE(patterns);
typedef struct {
CRGBPalette16 palette;
String name;
} PaletteAndName;
typedef PaletteAndName PaletteAndNameList[];
const CRGBPalette16 palettes[] = {
RainbowColors_p,
RainbowStripeColors_p,
CloudColors_p,
LavaColors_p,
OceanColors_p,
ForestColors_p,
PartyColors_p,
HeatColors_p
};
const uint8_t paletteCount = ARRAY_SIZE(palettes);
const String paletteNames[paletteCount] = {
"Rainbow",
"Rainbow Stripe",
"Cloud",
"Lava",
"Ocean",
"Forest",
"Party",
"Heat",
};
#include "Fields.h"
void setup() {
WiFi.setSleepMode(WIFI_NONE_SLEEP);
#ifdef SOUND_REACTIVE
patterns[patternCount - 2] = { soundReactive, "Sound Reactive" };
#endif // SOUND_REACTIVE
Serial.begin(115200);
delay(100);
Serial.setDebugOutput(true);
FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS); // for WS2812 (Neopixel)
//FastLED.addLeds<LED_TYPE,DATA_PIN,CLK_PIN,COLOR_ORDER>(leds, NUM_LEDS); // for APA102 (Dotstar)
FastLED.setDither(false);
FastLED.setCorrection(CORRECTION);
FastLED.setBrightness(brightness);
FastLED.setMaxPowerInVoltsAndMilliamps(VOLTS, MILLI_AMPS);
fill_solid(leds, NUM_LEDS, CRGB::Black);
FastLED.show();
EEPROM.begin(512);
loadSettings();
FastLED.setBrightness(brightness);
// irReceiver.enableIRIn(); // Start the receiver
Serial.println();
Serial.print(F("Heap: ")); Serial.println(system_get_free_heap_size());
Serial.print(F("Boot Vers: ")); Serial.println(system_get_boot_version());
Serial.print(F("CPU: ")); Serial.println(system_get_cpu_freq());
Serial.print(F("SDK: ")); Serial.println(system_get_sdk_version());
Serial.print(F("Chip ID: ")); Serial.println(system_get_chip_id());
Serial.print(F("Flash ID: ")); Serial.println(spi_flash_get_id());
Serial.print(F("Flash Size: ")); Serial.println(ESP.getFlashChipRealSize());
Serial.print(F("Vcc: ")); Serial.println(ESP.getVcc());
Serial.println();
#ifdef SOUND_REACTIVE
#if SENSOR_TYPE == 0
pinMode(SOUND_SENSOR_PIN, INPUT);
#endif
#endif // SOUND_REACTIVE
SPIFFS.begin();
{
Serial.println("SPIFFS contents:");
Dir dir = SPIFFS.openDir("/");
while (dir.next()) {
String fileName = dir.fileName();
size_t fileSize = dir.fileSize();
Serial.printf("FS File: %s, size: %s\n", fileName.c_str(), String(fileSize).c_str());
}
Serial.printf("\n");
}
if (apMode)
{
WiFi.mode(WIFI_AP);
// Do a little work to get a unique-ish name. Append the
// last two bytes of the MAC (HEX'd) to "Thing-":
uint8_t mac[WL_MAC_ADDR_LENGTH];
WiFi.softAPmacAddress(mac);
String macID = String(mac[WL_MAC_ADDR_LENGTH - 2], HEX) +
String(mac[WL_MAC_ADDR_LENGTH - 1], HEX);
macID.toUpperCase();
String AP_NameString = "ESP8266 Thing " + macID;
char AP_NameChar[AP_NameString.length() + 1];
memset(AP_NameChar, 0, AP_NameString.length() + 1);
for (int i = 0; i < AP_NameString.length(); i++)
AP_NameChar[i] = AP_NameString.charAt(i);
WiFi.softAP(AP_NameChar, WiFiAPPSK);
Serial.printf("Connect to Wi-Fi access point: %s\n", AP_NameChar);
Serial.println("and open http://192.168.4.1 in your browser");
}
else
{
WiFi.mode(WIFI_STA);
Serial.printf("Connecting to %s\n", ssid);
if (String(WiFi.SSID()) != String(ssid)) {
WiFi.begin(ssid, password);
WiFi.hostname(HOSTNAME);
}
}
#ifdef ENABLE_ALEXA_SUPPORT
#ifdef ALEXA_DEVICE_NAME
alexa_main = new EspalexaDevice(ALEXA_DEVICE_NAME, mainAlexaEvent, EspalexaDeviceType::color);
#else
alexa_main = new EspalexaDevice(HOSTNAME, mainAlexaEvent, EspalexaDeviceType::color);
#endif
espalexa.addDevice(alexa_main);
#ifdef AddAutoplayDevice
espalexa.addDevice(AddAutoplayDevice, AlexaAutoplayEvent, EspalexaDeviceType::onoff); //non-dimmable device
#endif
#ifdef AddStrobeDevice
espalexa.addDevice(AddStrobeDevice, AlexaStrobeEvent, EspalexaDeviceType::color); //non-dimmable device
#endif
#ifdef AddSpecificPatternDevice
espalexa.addDevice(AddSpecificPatternDevice, AlexaSpecificEvent, EspalexaDeviceType::onoff); //non-dimmable device
#endif
webServer.onNotFound([]() {
if (!espalexa.handleAlexaApiCall(webServer.uri(), webServer.arg(0))) //if you don't know the URI, ask espalexa whether it is an Alexa control request
{
//whatever you want to do with 404s
webServer.send(404, "text/plain", "Not found");
}
});
webServer.on("/alexa", HTTP_GET, []() {
String h = "<font face='arial'><h1> Alexa pairing mode</h1>";
h += "<h2>Procedure: </h3>";
h += "The webserver will reboot and the UI won't be available.<br>";
h += "<b>Now. Say to Alexa: 'Alexa, discover devices'.<b><br><br>";
h += "Alexa should tell you that it found a new device, if it did reset the esp8266 to return to the normal mode.</font>";
webServer.send(200, "text/html", h);
delay(100);
webServer.stop();
delay(500);
webServer.close();
delay(500);
webServer2.onNotFound([]() {
if (!espalexa.handleAlexaApiCall(webServer2.uri(), webServer2.arg(0))) //if you don't know the URI, ask espalexa whether it is an Alexa control request
{
//whatever you want to do with 404s
webServer2.send(404, "text/plain", "Not found");
}
});
espalexa.begin(&webServer2);
delay(100);
while (1)
{
espalexa.loop();
delay(1);
}
});
#endif
httpUpdateServer.setup(&webServer);
webServer.on("/all", HTTP_GET, []() {
String json = getFieldsJson(fields, fieldCount);
webServer.send(200, "text/json", json);
});
webServer.on("/fieldValue", HTTP_GET, []() {
String name = webServer.arg("name");
String value = getFieldValue(name, fields, fieldCount);
webServer.send(200, "text/json", value);
});
webServer.on("/fieldValue", HTTP_POST, []() {
String name = webServer.arg("name");
String value = webServer.arg("value");
String newValue = setFieldValue(name, value, fields, fieldCount);
webServer.send(200, "text/json", newValue);
});
webServer.on("/power", HTTP_POST, []() {
String value = webServer.arg("value");
setPower(value.toInt());
sendInt(power);
});
webServer.on("/cooling", HTTP_POST, []() {
String value = webServer.arg("value");
cooling = value.toInt();
broadcastInt("cooling", cooling);
sendInt(cooling);
});
webServer.on("/sparking", HTTP_POST, []() {
String value = webServer.arg("value");
sparking = value.toInt();
broadcastInt("sparking", sparking);
sendInt(sparking);
});
webServer.on("/speed", HTTP_POST, []() {
String value = webServer.arg("value");
speed = value.toInt();
broadcastInt("speed", speed);
sendInt(speed);
});
webServer.on("/twinkleSpeed", HTTP_POST, []() {
String value = webServer.arg("value");
twinkleSpeed = value.toInt();
if (twinkleSpeed < 0) twinkleSpeed = 0;
else if (twinkleSpeed > 8) twinkleSpeed = 8;
broadcastInt("twinkleSpeed", twinkleSpeed);
sendInt(twinkleSpeed);
});
webServer.on("/twinkleDensity", HTTP_POST, []() {
String value = webServer.arg("value");
twinkleDensity = value.toInt();
if (twinkleDensity < 0) twinkleDensity = 0;
else if (twinkleDensity > 8) twinkleDensity = 8;
broadcastInt("twinkleDensity", twinkleDensity);
sendInt(twinkleDensity);
});
webServer.on("/solidColor", HTTP_POST, []() {
String r = webServer.arg("r");
String g = webServer.arg("g");
String b = webServer.arg("b");
setSolidColor(r.toInt(), g.toInt(), b.toInt());
#ifdef ENABLE_ALEXA_SUPPORT
alexa_main->setColor(r.toInt(), g.toInt(), b.toInt());
#endif
sendString(String(solidColor.r) + "," + String(solidColor.g) + "," + String(solidColor.b));
});
webServer.on("/pattern", HTTP_POST, []() {
String value = webServer.arg("value");
setPattern(value.toInt());
sendInt(currentPatternIndex);
});
webServer.on("/patternName", HTTP_POST, []() {
String value = webServer.arg("value");
setPatternName(value);
sendInt(currentPatternIndex);
});
webServer.on("/palette", HTTP_POST, []() {
String value = webServer.arg("value");
setPalette(value.toInt());
sendInt(currentPaletteIndex);
});
webServer.on("/paletteName", HTTP_POST, []() {
String value = webServer.arg("value");
setPaletteName(value);
sendInt(currentPaletteIndex);
});
webServer.on("/brightness", HTTP_POST, []() {
String value = webServer.arg("value");
setBrightness(value.toInt());
#ifdef ENABLE_ALEXA_SUPPORT
alexa_main->setValue(brightness);
#endif
sendInt(brightness);
});
webServer.on("/autoplay", HTTP_POST, []() {
String value = webServer.arg("value");
setAutoplay(value.toInt());
sendInt(autoplay);
});
webServer.on("/autoplayDuration", HTTP_POST, []() {
String value = webServer.arg("value");
setAutoplayDuration(value.toInt());
sendInt(autoplayDuration);
});
webServer.on("/allLeafs", HTTP_POST, []() {
String value = webServer.arg("value");
setAllLeafs(value.toInt());
sendInt(allLeafs);
});
webServer.on("/selectedLeaf", HTTP_POST, []() {
String value = webServer.arg("value");
setSelectedLeaf(value.toInt());
sendInt(selectedLeaf);
});
webServer.on("/custom", HTTP_POST, []() {
String value = webServer.arg("value");
Serial.println(value);
value.toCharArray(cpattern, 500);
Serial.println(value);
sendString(value);
setPattern(30);
});
//list directory
webServer.on("/list", HTTP_GET, handleFileList);
//load editor
webServer.on("/edit", HTTP_GET, []() {
if (!handleFileRead("/edit.htm")) webServer.send(404, "text/plain", "FileNotFound");
});
//create file
webServer.on("/edit", HTTP_PUT, handleFileCreate);
//delete file
webServer.on("/edit", HTTP_DELETE, handleFileDelete);
//first callback is called after the request has ended with all parsed arguments
//second callback handles file uploads at that location
webServer.on("/edit", HTTP_POST, []() {
webServer.send(200, "text/plain", "");
}, handleFileUpload);
webServer.serveStatic("/", SPIFFS, "/", "max-age=86400");
#ifdef ENABLE_ALEXA_SUPPORT
espalexa.begin(&webServer);
#endif
#ifndef ENABLE_ALEXA_SUPPORT
webServer.begin();
#endif
Serial.println("HTTP web server started");
// webSocketsServer.begin();
// webSocketsServer.onEvent(webSocketEvent);
// Serial.println("Web socket server started");
autoPlayTimeout = millis() + (autoplayDuration * 1000);
}
void sendInt(uint8_t value)
{
sendString(String(value));
}
void sendString(String value)
{
webServer.send(200, "text/plain", value);
}
void broadcastInt(String name, uint8_t value)
{
String json = "{\"name\":\"" + name + "\",\"value\":" + String(value) + "}";
// webSocketsServer.broadcastTXT(json);
}
void broadcastString(String name, String value)
{
String json = "{\"name\":\"" + name + "\",\"value\":\"" + String(value) + "\"}";
// webSocketsServer.broadcastTXT(json);
}
void loop() {
MDNS.update();
// Add entropy to random number generator; we use a lot of it.
random16_add_entropy(random(65535));
// dnsServer.processNextRequest();
// webSocketsServer.loop();
#ifdef ENABLE_ALEXA_SUPPORT
espalexa.loop();
#else
webServer.handleClient();
#endif
// handleIrInput();
if (power == 0) {
fill_solid(leds, NUM_LEDS, CRGB::Black);
FastLED.show();
// FastLED.delay(15);
return;
}
static bool hasConnected = false;
EVERY_N_SECONDS(1) {
if (WiFi.status() != WL_CONNECTED) {
// Serial.printf("Connecting to %s\n", ssid);
hasConnected = false;
}
else if (!hasConnected) {
hasConnected = true;
Serial.print("Connected! Open http://");
Serial.print(WiFi.localIP());
Serial.println(" in your browser \n");
if (!MDNS.begin(HOSTNAME)) {
Serial.println("Error setting up MDNS responder! \n");
} else {
Serial.println("mDNS responder started \n");
MDNS.addService("http", "tcp", 80);
}
}
}
// EVERY_N_SECONDS(10) {
// Serial.print( F("Heap: ") ); Serial.println(system_get_free_heap_size());
// }
// change to a new cpt-city gradient palette
EVERY_N_SECONDS(secondsPerPalette) {
gCurrentPaletteNumber = addmod8(gCurrentPaletteNumber, 1, gGradientPaletteCount);
gTargetPalette = gGradientPalettes[gCurrentPaletteNumber];
}
EVERY_N_MILLISECONDS(80) {
// slowly blend the current palette to the next
nblendPaletteTowardPalette(gCurrentPalette, gTargetPalette, 8);
gHue++; // slowly cycle the "base color" through the rainbow
}
EVERY_N_MILLIS_I(thistimer, 128-(speed/2)) {
if (breathe_dir == 1)breathe++; else breathe--;
if (breathe >= 255)breathe_dir = 0;
else if (breathe <= 0) breathe_dir = 1;
//Serial.println(breathe);
}
thistimer.setPeriod(64-(speed/4));
if (autoplay && (millis() > autoPlayTimeout)) {
adjustPattern(true);
autoPlayTimeout = millis() + (autoplayDuration * 1000);
}
// Call the current pattern function once, updating the 'leds' array
patterns[currentPatternIndex].pattern();
FastLED.show();
// insert a delay to keep the framerate modest
FastLED.delay(1000 / FRAMES_PER_SECOND);
}
//void webSocketEvent(uint8_t num, WStype_t type, uint8_t * payload, size_t length) {
//
// switch (type) {
// case WStype_DISCONNECTED:
// Serial.printf("[%u] Disconnected!\n", num);
// break;
//
// case WStype_CONNECTED:
// {
// IPAddress ip = webSocketsServer.remoteIP(num);
// Serial.printf("[%u] Connected from %d.%d.%d.%d url: %s\n", num, ip[0], ip[1], ip[2], ip[3], payload);
//
// // send message to client
// // webSocketsServer.sendTXT(num, "Connected");
// }
// break;
//
// case WStype_TEXT:
// Serial.printf("[%u] get Text: %s\n", num, payload);
//
// // send message to client
// // webSocketsServer.sendTXT(num, "message here");
//
// // send data to all connected clients
// // webSocketsServer.broadcastTXT("message here");
// break;
//
// case WStype_BIN:
// Serial.printf("[%u] get binary length: %u\n", num, length);
// hexdump(payload, length);
//
// // send message to client
// // webSocketsServer.sendBIN(num, payload, lenght);
// break;
// }
//}
void loadSettings()
{
brightness = EEPROM.read(0);
currentPatternIndex = EEPROM.read(1);
if (currentPatternIndex < 0)
currentPatternIndex = 0;
else if (currentPatternIndex >= patternCount)
currentPatternIndex = patternCount - 1;
byte r = EEPROM.read(2);
byte g = EEPROM.read(3);
byte b = EEPROM.read(4);
if (r == 0 && g == 0 && b == 0)
{
}
else
{
solidColor = CRGB(r, g, b);
}
power = EEPROM.read(5);
autoplay = EEPROM.read(6);
autoplayDuration = EEPROM.read(7);
currentPaletteIndex = EEPROM.read(8);
if (currentPaletteIndex < 0)
currentPaletteIndex = 0;
else if (currentPaletteIndex >= paletteCount)
currentPaletteIndex = paletteCount - 1;
}
void setPower(uint8_t value)
{
power = value == 0 ? 0 : 1;
EEPROM.write(5, power);
EEPROM.commit();
broadcastInt("power", power);
}
void setAutoplay(uint8_t value)
{
autoplay = value == 0 ? 0 : 1;
EEPROM.write(6, autoplay);
EEPROM.commit();
broadcastInt("autoplay", autoplay);
}
void setAutoplayDuration(uint8_t value)
{
autoplayDuration = value;
EEPROM.write(7, autoplayDuration);
EEPROM.commit();
autoPlayTimeout = millis() + (autoplayDuration * 1000);
broadcastInt("autoplayDuration", autoplayDuration);
}
void setAllLeafs(uint8_t value)
{
allLeafs = value == 0 ? 0 : 1;
EEPROM.write(8, allLeafs);
EEPROM.commit();
broadcastInt("allLeafs", allLeafs);
}
void setSelectedLeaf(uint8_t value)
{
selectedLeaf = value;
EEPROM.write(9, selectedLeaf);
EEPROM.commit();
broadcastInt("selectedLeaf", selectedLeaf);
}
void setSolidColor(CRGB color)
{
setSolidColor(color.r, color.g, color.b);
}
void setSolidColor(uint8_t r, uint8_t g, uint8_t b)
{
solidColor = CRGB(r, g, b);
EEPROM.write(2, r);
EEPROM.write(3, g);
EEPROM.write(4, b);
EEPROM.commit();
setPatternName("Solid Color");
broadcastString("color", String(solidColor.r) + "," + String(solidColor.g) + "," + String(solidColor.b));
FastLED.show();
}
// increase or decrease the current pattern number, and wrap around at the ends
void adjustPattern(bool up)
{
#ifdef RANDOM_AUTOPLAY_PATTERN
if (autoplay == 1)
{
uint8_t lastpattern = currentPatternIndex;
while (currentPatternIndex == lastpattern)
{
uint8_t newpattern = random8(0, patternCount - 2);
if (newpattern != lastpattern)currentPatternIndex = newpattern;
}
}
#else // RANDOM_AUTOPLAY_PATTERN
if (up)
currentPatternIndex++;
else
currentPatternIndex--;
#endif
if (autoplay == 0)
{
if (up)
currentPatternIndex++;
else
currentPatternIndex--;
}
// wrap around at the ends
if (currentPatternIndex < 0)
currentPatternIndex = patternCount - 1;
if (currentPatternIndex >= (patternCount-1))
currentPatternIndex = 0;
if (autoplay == 0) {
EEPROM.write(1, currentPatternIndex);
EEPROM.commit();
}
broadcastInt("pattern", currentPatternIndex);
}
void setPattern(uint8_t value)
{
if (value >= patternCount)
value = patternCount - 1;
currentPatternIndex = value;
if (autoplay == 0) {
EEPROM.write(1, currentPatternIndex);
EEPROM.commit();
}
broadcastInt("pattern", currentPatternIndex);
}
void setPatternName(String name)
{
for (uint8_t i = 0; i < patternCount; i++) {
if (patterns[i].name == name) {
setPattern(i);
break;
}
}
}
void setPalette(uint8_t value)
{
if (value >= paletteCount)
value = paletteCount - 1;
currentPaletteIndex = value;
EEPROM.write(8, currentPaletteIndex);
EEPROM.commit();
broadcastInt("palette", currentPaletteIndex);
}
void setPaletteName(String name)
{
for (uint8_t i = 0; i < paletteCount; i++) {
if (paletteNames[i] == name) {
setPalette(i);
break;
}
}
}
void adjustBrightness(bool up)
{
if (up && brightnessIndex < brightnessCount - 1)
brightnessIndex++;
else if (!up && brightnessIndex > 0)
brightnessIndex--;
brightness = brightnessMap[brightnessIndex];
FastLED.setBrightness(brightness);
EEPROM.write(0, brightness);
EEPROM.commit();
broadcastInt("brightness", brightness);
}
void setBrightness(uint8_t value)
{
if (value > 255)
value = 255;
else if (value < 0) value = 0;
brightness = value;
FastLED.setBrightness(brightness);
EEPROM.write(0, brightness);
EEPROM.commit();
broadcastInt("brightness", brightness);
}
void strandTest()
{
static uint8_t i = 0;
EVERY_N_SECONDS(1)
{
i++;
if (i >= NUM_LEDS)
i = 0;
}
fill_solid(leds, NUM_LEDS, CRGB::Black);
leds[i] = solidColor;
}
void showSolidColor()
{
if (allLeafs == 0 && selectedLeaf > 0 && selectedLeaf <= LEAFCOUNT)fill_solid(leds + PIXELS_PER_LEAF * (selectedLeaf - 1), PIXELS_PER_LEAF, solidColor);
else fill_solid(leds, NUM_LEDS, solidColor);
}
// Patterns from FastLED example DemoReel100: https://github.com/FastLED/FastLED/blob/master/examples/DemoReel100/DemoReel100.ino
void rainbow_strobe()
{
if (autoplay == 1)adjustPattern(true);
static bool p = false;
static long lm = 0;
if (millis() - lm > (128 - (speed / 2)))
{
if (p) fill_solid(leds, NUM_LEDS, CRGB(0, 0, 0));
else fill_solid(leds, NUM_LEDS, CHSV(gHue, 255, 255));
lm = millis();
p = !p;
}
}
void strobe()
{
if (autoplay == 1)adjustPattern(true);
static bool p = false;
static long lm = 0;
if (millis() - lm > (128 - (speed / 2)))
{
if (p) fill_solid(leds, NUM_LEDS, CRGB(0, 0, 0));
else fill_solid(leds, NUM_LEDS, solidColor);
lm = millis();
p = !p;
}
}
void rainbow()
{
// FastLED's built-in rainbow generator
for (int i = 0; i < LEAFCOUNT; i++)
{
uint8_t myHue = (gHue + i * (255 / LEAFCOUNT));
gHue = gHue > 255 ? gHue - 255 : gHue;
//Serial.printf("I:%d \tH:%d\n", i*PIXELS_PER_LEAF, myHue);
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, CHSV(myHue, 255, 255));
}
}
void rainbowWithGlitter()
{
// built-in FastLED rainbow, plus some random sparkly glitter
rainbow();
addGlitter(80);
}
void rainbowSolid()
{
fill_solid(leds, NUM_LEDS, CHSV(gHue, 255, 255));
}
void confetti()
{
// random colored speckles that blink in and fade smoothly
fadeToBlackBy(leds, NUM_LEDS, 3);
int pos = random16(LEAFCOUNT * 3);
// leds[pos] += CHSV( gHue + random8(64), 200, 255);
int val = gHue + random8(64);
for (int i = 0; i < (PIXELS_PER_LEAF / 3); i++)
{
leds[i + pos * (PIXELS_PER_LEAF / 3)] += ColorFromPalette(palettes[currentPaletteIndex], val);
//Serial.printf("POS:%d\n", i + pos);
}
}
void sinelon()
{
// a colored dot sweeping back and forth, with fading trails
fadeToBlackBy(leds, NUM_LEDS, 20);
int pos = beatsin16(speed, 0, NUM_LEDS);
static int prevpos = 0;
CRGB color = ColorFromPalette(palettes[currentPaletteIndex], gHue, 255);
if (pos < prevpos) {
fill_solid(leds + pos, (prevpos - pos) + 1, color);
}
else {
fill_solid(leds + prevpos, (pos - prevpos) + 1, color);
}
prevpos = pos;
}
void bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t beat = beatsin8(speed, 64, 255);
CRGBPalette16 palette = palettes[currentPaletteIndex];
for (int i = 0; i < LEAFCOUNT; i++) {
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i * PIXELS_PER_LEAF + i2] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10));
}
}
// BACKUP
/*
void bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t beat = beatsin8(speed, 64, 255);
CRGBPalette16 palette = palettes[currentPaletteIndex];
for (int i = 0; i < NUM_LEDS; i++) {
leds[i] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10));
}
}
*/
void juggle()
{
static uint8_t numdots = 4; // Number of dots in use.
static uint8_t faderate = 2; // How long should the trails be. Very low value = longer trails.
static uint8_t hueinc = 255 / numdots - 1; // Incremental change in hue between each dot.
static uint8_t thishue = 0; // Starting hue.
static uint8_t curhue = 0; // The current hue
static uint8_t thissat = 255; // Saturation of the colour.
static uint8_t thisbright = 255; // How bright should the LED/display be.
static uint8_t basebeat = 5; // Higher = faster movement.
static uint8_t lastSecond = 99; // Static variable, means it's only defined once. This is our 'debounce' variable.
uint8_t secondHand = (millis() / 1000) % 30; // IMPORTANT!!! Change '30' to a different value to change duration of the loop.
if (lastSecond != secondHand) { // Debounce to make sure we're not repeating an assignment.
lastSecond = secondHand;
switch (secondHand) {
case 0: numdots = 1; basebeat = 20; hueinc = 16; faderate = 2; thishue = 0; break; // You can change values here, one at a time , or altogether.
case 10: numdots = 4; basebeat = 10; hueinc = 16; faderate = 8; thishue = 128; break;
case 20: numdots = 8; basebeat = 3; hueinc = 0; faderate = 8; thishue = random8(); break; // Only gets called once, and not continuously for the next several seconds. Therefore, no rainbows.
case 30: break;
}
}
// Several colored dots, weaving in and out of sync with each other
curhue = thishue; // Reset the hue values.
fadeToBlackBy(leds, NUM_LEDS, faderate);
for (int i = 0; i < numdots; i++) {
//beat16 is a FastLED 3.1 function
leds[beatsin16(basebeat + i + numdots, 0, NUM_LEDS)] += CHSV(gHue + curhue, thissat, thisbright);
curhue += hueinc;
}
}
void fire()
{
heatMap(HeatColors_p, true);
}
void water()
{
heatMap(IceColors_p, false);
}
// Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
void pride()
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
uint8_t sat8 = beatsin88(87, 220, 250);
uint8_t brightdepth = beatsin88(341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88(203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 1, 3000);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88(400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for (uint16_t i = 0; i < (LEAFCOUNT * 3); i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16(brightnesstheta16) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
CRGB newcolor = CHSV(hue8, sat8, bri8);
uint16_t pixelnumber = i;
pixelnumber = ((LEAFCOUNT * 3) - 1) - pixelnumber;
for (int i2 = 0; i2 < (PIXELS_PER_LEAF / 3); i2++)
{
nblend(leds[pixelnumber * (PIXELS_PER_LEAF / 3) + i2], newcolor, 64);
}
}
}
//#############BACKUP########################
/*
// Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
void pride()
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 1, 3000);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for ( uint16_t i = 0 ; i < NUM_LEDS; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16 ) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
CRGB newcolor = CHSV( hue8, sat8, bri8);
uint16_t pixelnumber = i;
pixelnumber = (NUM_LEDS - 1) - pixelnumber;
nblend( leds[pixelnumber], newcolor, 64);
}
}
*/
void radialPaletteShift()
{
for (uint16_t i = 0; i < NUM_LEDS; i++) {
// leds[i] = ColorFromPalette( gCurrentPalette, gHue + sin8(i*16), brightness);
leds[i] = ColorFromPalette(gCurrentPalette, i + gHue, 255, LINEARBLEND);
}
}
// based on FastLED example Fire2012WithPalette: https://github.com/FastLED/FastLED/blob/master/examples/Fire2012WithPalette/Fire2012WithPalette.ino
void heatMap(CRGBPalette16 palette, bool up)
{
fill_solid(leds, NUM_LEDS, CRGB::Black);
// Add entropy to random number generator; we use a lot of it.
random16_add_entropy(random(256));
// Array of temperature readings at each simulation cell
static byte heat[NUM_LEDS];
byte colorindex;
// Step 1. Cool down every cell a little
for (uint16_t i = 0; i < NUM_LEDS; i++) {
heat[i] = qsub8(heat[i], random8(0, ((cooling * 10) / NUM_LEDS) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for (uint16_t k = NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if (random8() < sparking) {
int y = random8(7);
heat[y] = qadd8(heat[y], random8(160, 255));
}
// Step 4. Map from heat cells to LED colors
for (uint16_t j = 0; j < NUM_LEDS; j++) {
// Scale the heat value from 0-255 down to 0-240
// for best results with color palettes.
colorindex = scale8(heat[j], 190);
CRGB color = ColorFromPalette(palette, colorindex);
if (up) {
leds[j] = color;
}
else {
leds[(NUM_LEDS - 1) - j] = color;
}
}
}
void addGlitter(uint8_t chanceOfGlitter)
{
if (random8() < chanceOfGlitter) {
leds[random16(NUM_LEDS)] += CRGB::White;
}
}
///////////////////////////////////////////////////////////////////////
// Forward declarations of an array of cpt-city gradient palettes, and
// a count of how many there are. The actual color palette definitions
// are at the bottom of this file.
extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
extern const uint8_t gGradientPaletteCount;
uint8_t beatsaw8(accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255,
uint32_t timebase = 0, uint8_t phase_offset = 0)
{
uint8_t beat = beat8(beats_per_minute, timebase);
uint8_t beatsaw = beat + phase_offset;
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8(beatsaw, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
void colorWaves()
{
colorwaves(leds, LEAFCOUNT * 3, gCurrentPalette);
}
// ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb
// This function draws color waves with an ever-changing,
// widely-varying set of parameters, using a color palette.
void colorwaves(CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette)
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
// uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88(341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88(203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 300, 1500);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88(400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for (uint16_t i = 0; i < numleds; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
uint16_t h16_128 = hue16 >> 7;
if (h16_128 & 0x100) {
hue8 = 255 - (h16_128 >> 1);
}
else {
hue8 = h16_128 >> 1;
}
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16(brightnesstheta16) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
uint8_t index = hue8;
//index = triwave8( index);
index = scale8(index, 240);
CRGB newcolor = ColorFromPalette(palette, index, bri8);
uint16_t pixelnumber = i;
//pixelnumber = (numleds - 1) - pixelnumber;
//nblend(ledarray[pixelnumber], newcolor, 128);
pixelnumber = ((LEAFCOUNT * 3) - 1) - pixelnumber;
for (int i2 = 0; i2 < (PIXELS_PER_LEAF / 3); i2++)
{
nblend(leds[pixelnumber * (PIXELS_PER_LEAF / 3) + i2], newcolor, 128);
}
}
}
// Alternate rendering function just scrolls the current palette
// across the defined LED strip.
void palettetest(CRGB* ledarray, uint16_t numleds, const CRGBPalette16& gCurrentPalette)
{
static uint8_t startindex = 0;
startindex--;
fill_palette(ledarray, numleds, startindex, (256 / NUM_LEDS) + 1, gCurrentPalette, 255, LINEARBLEND);
}
/*
Function: ExtractValues
Used to extract a given amount of values from the message with a start index
Parameters:
- startindex: position in the string where to start
- valuecount: amount of values to capture
*/
void ExtractValues(char receivedChars[], int startindex, int valuecount)
{
int pos = startindex;
for (int c = 0; c < valuecount; c++)
{
int i = 0;
while (receivedChars[pos] != ';' && receivedChars[pos] != '\0') {
vals[c][i] = receivedChars[pos];
pos++;
i++;
}
vals[c][i] = '\0';
pos++;
}
#ifdef DEBUG_SERIAL
for (int p = 0; p < valuecount; p++)
{
Serial.print("Extracting: "); Serial.println(vals[p]);
}
#endif // DEBUG_SERIAL
}
void cycle(CRGB endclr, CRGB midclr, uint8_t start) {
fill_gradient_RGB(leds, start, endclr, PIXELS_PER_LEAF/ 2, midclr);
fill_gradient_RGB(leds, PIXELS_PER_LEAF/ 2 + 1, midclr, PIXELS_PER_LEAF, endclr);
}
// Set Custom Pattern for the node red part
void SetCustomPattern()
{
uint8_t cnt = 0;
uint8_t isflow = 0;
ExtractValues(cpattern, 0, 2);
cnt = atoi(vals[0]);
isflow = atoi(vals[1]);
ExtractValues(cpattern, 0, 2 + 5 * cnt);
if (isflow == 0)
{
for (uint8_t i = 0; i < cnt; i++)
{
int8_t cmode = atoi(vals[2 + i * 5]);
uint8_t phase = atoi(vals[2 + i * 5 + 1]);
int mul = breathe;
if (breathe_dir == 1)
{
if ((mul + phase) > 255)mul = 255 + (255 - mul - phase);
else mul += phase;
}
else
{
if ((mul - phase) < 0)mul = -mul + phase;
else mul -= phase;
}
if (cmode == 0)mul = 255;
double fac = (mul * 100) / 255.00;
//if(cmode==1)Serial.printf("%d ", mul);
for (uint8_t x = 0; x < PIXELS_PER_LEAF; x++)
{
//Serial.printf("Setting %d to %d, %d, %d\n", cnt*PIXELS_PER_LEAF+x,atoi(vals[2+i*5+2]), atoi(vals[2+i*5+3]), atoi(vals[2+i*5+4]));
leds[i * PIXELS_PER_LEAF + x] = CRGB((atoi(vals[2 + i * 5 + 2]) * fac) / 100.00, (atoi(vals[2 + i * 5 + 3]) * fac) / 100.00, (atoi(vals[2 + i * 5 + 4]) * fac) / 100.00);
}
}
}
else
{
for (int i = 0; i < cnt; i++)
{
if (i != (cnt - 1))
{
//uint8_t speed = beatsin8(6,0,255);
CRGB endclr = blend(CRGB(atoi(vals[2 + i * 5 + 2]), atoi(vals[2 + i * 5 + 3]), atoi(vals[2 + i * 5 + 4])), CRGB(atoi(vals[2 + (i + 1) * 5 + 2]), atoi(vals[2 + (i + 1) * 5 + 3]), atoi(vals[2 + (i + 1) * 5 + 4])), breathe);
CRGB midclr = blend(CRGB(atoi(vals[2 + (i + 1) * 5 + 2]), atoi(vals[2 + (i + 1) * 5 + 3]), atoi(vals[2 + (i + 1) * 5 + 4])), CRGB(atoi(vals[2 + i * 5 + 2]), atoi(vals[2 + i * 5 + 3]), atoi(vals[2 + i * 5 + 4])), breathe);
cycle(endclr, midclr, i*PIXELS_PER_LEAF);
}
else
{
//uint8_t speed = beatsin8(6,0,255);
CRGB endclr = blend(CRGB(atoi(vals[2 + 2]), atoi(vals[2 + 3]), atoi(vals[2 + 4])), CRGB(atoi(vals[2 + (i + 1) * 5 + 2]), atoi(vals[2 + (i + 1) * 5 + 3]), atoi(vals[2 + (i + 1) * 5 + 4])), breathe);
CRGB midclr = blend(CRGB(atoi(vals[2 + (i + 1) * 5 + 2]), atoi(vals[2 + (i + 1) * 5 + 3]), atoi(vals[2 + (i + 1) * 5 + 4])), CRGB(atoi(vals[2 + 2]), atoi(vals[2 + 3]), atoi(vals[2 + 4])), breathe);
cycle(endclr, midclr, i*PIXELS_PER_LEAF);
}
}
}
//Serial.println("");
}
// #################### Sound Reactive and Alexa below
void soundReactive()
{
static int minlevel = 0;
static int decay = 60;
static double lastlevel = 2;
static double level = 0;
#define arrsize 3
static double measure8avg[arrsize] = { 0,0,0 };
static int iter = 0;
#if SENSOR_TYPE == 0
if (digitalRead(SOUND_SENSOR_PIN) > 0)level++;
else level--;
if (level < minlevel)level = minlevel;
if (level > LEDS_PER_LINE)level = LEDS_PER_LINE;
fill_solid(leds, level, CHSV(gHue, 255, 255));
fadeToBlackBy(leds + level, LEDS_PER_LINE - level, decay);
#endif
#if SENSOR_TYPE > 0
#if SENSOR_TYPE == 2
int measure = 0;
for (int it = 0; it < 5; it++)
{
int m = analogRead(SOUND_SENSOR_PIN);
Serial.println(m);
if (m < 450 && m >350) m = 0;
else if (m < 350)m = (400 - m) * 2;
if (m > 400)m -= 400;
measure += m;
}
measure /= 5;
#endif
#if SENSOR_TYPE == 1
int measure = 0;
for (int it = 0; it < 5; it++)
{
int m = analogRead(SOUND_SENSOR_PIN);
m -= 800;
m *= -1;
if (m < 100)m = 0;
measure += m;
}
measure /= 5;
measure /= 2; // cut the volts in half
#endif
//Serial.println(measure);
iter++;
if (iter > arrsize)iter = 0;
measure8avg[iter] = measure;
double avg = 0;
for (int x = 0; x < arrsize; x++)
{
avg += measure8avg[x];
}
avg /= arrsize;
avg = measure;
int mlevel = map(avg, 30, 300, 1, NUM_LEDS);
if (mlevel < 1)mlevel = 1;
//if (lastlevel > mlevel) level = lastlevel - 0.8;
//else if (lastlevel < mlevel) level = lastlevel+1;
level = mlevel;
if (level < minlevel)level = minlevel;
if (level > NUM_LEDS)level = NUM_LEDS;
fill_solid(leds, level, CHSV(gHue, 255, 255));
fadeToBlackBy(leds + (int)level, NUM_LEDS - (int)level, decay);
lastlevel = level;
//Serial.print(mlevel); Serial.print(" "); Serial.println(level);
//Serial.printf("%d, %d\n", mlevel, level);
#endif
}
//############################## ALEXA Device Events ##############################
#ifdef ENABLE_ALEXA_SUPPORT
void mainAlexaEvent(EspalexaDevice* d) {
if (d == nullptr) return;
Serial.print("Alexa update: rgb: "); Serial.print(d->getR() + d->getG() + d->getB()); Serial.print(", b: "); Serial.println(d->getValue());
if (d->getValue() == 0)setPower(0); else {
setPower(1);
setBrightness(d->getValue());
}
static int lr;
static int lg;
static int lb;
if ((lr != NULL && lr != d->getR() && lg != d->getG() && lb != d->getB()) || currentPatternIndex == patternCount - 1)
{
setSolidColor(d->getR(), d->getG(), d->getB());
setPattern(patternCount - 1);
}
lr = d->getR();
lg = d->getG();
lb = d->getB();
}
#ifdef AddStrobeDevice
void AlexaStrobeEvent(EspalexaDevice* d) {
if (d == nullptr) return;
Serial.print("Alexa Strobe update: rgb: "); Serial.print(d->getR() + d->getG() + d->getB()); Serial.print(", b: "); Serial.println(d->getValue());
if (d->getValue() == 0)setPattern(patternCount - 1); else {
if (d->getValue() == 255)
{
setBrightness(255);
setPattern(13);
}
else speed = d->getValue();
d->setValue(speed);
}
static int lr;
static int lg;
static int lb;
if ((lr != NULL && lr != d->getR() && lg != d->getG() && lb != d->getB()) || currentPatternIndex == patternCount - 1)
{
setSolidColor(d->getR(), d->getG(), d->getB());
setPattern(12);
}
lr = d->getR();
lg = d->getG();
lb = d->getB();
}
#endif
#ifdef AddAutoplayDevice
void AlexaAutoplayEvent(EspalexaDevice* d) {
if (d == nullptr) return;
Serial.print("Alexa Autoplay update: state: "); Serial.println(d->getPercent());
if (d->getValue() > 0)
{
setAutoplay(1);
setAutoplayDuration(d->getPercent());
}
else setAutoplay(0);
}
#endif
#ifdef AddSpecificPatternDevice
void AlexaSpecificEvent(EspalexaDevice* d) {
if (d == nullptr) return;
Serial.print("Alexa Specific Pattern update: state: "); Serial.println(d->getValue());
if (d->getValue() != 0)setPattern(SpecificPattern);
else setPattern(patternCount - 1);
}
#endif
#endif