/* ESP8266 + FastLED + IR Remote: https://github.com/jasoncoon/esp8266-fastled-webserver Copyright (C) 2015-2016 Jason Coon This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ //#define FASTLED_ALLOW_INTERRUPTS 0 #define FASTLED_INTERRUPT_RETRY_COUNT 0 #include FASTLED_USING_NAMESPACE extern "C" { #include "user_interface.h" } #include #include #include #include #include #include #include #include #include "GradientPalettes.h" #define ARRAY_SIZE(A) (sizeof(A) / sizeof((A)[0])) #include "Field.h" #define HOSTNAME "ESP8266-" ///< Hostname. The setup function adds the Chip ID at the end. //#define RECV_PIN D4 //IRrecv irReceiver(RECV_PIN); //#include "Commands.h" const bool apMode = false; // AP mode password const char WiFiAPPSK[] = ""; // Wi-Fi network to connect to (if not in AP mode) const char* ssid = ""; const char* password = ""; ESP8266WebServer webServer(80); WebSocketsServer webSocketsServer = WebSocketsServer(81); ESP8266HTTPUpdateServer httpUpdateServer; #include "FSBrowser.h" #define DATA_PIN D5 #define LED_TYPE WS2812B #define COLOR_ORDER GRB #define NUM_LEDS 8 * 8 * 6 #define MILLI_AMPS 2000 // IMPORTANT: set the max milli-Amps of your power supply (4A = 4000mA) #define FRAMES_PER_SECOND 120 // here you can control the speed. With the Access Point / Web Server the animations run a bit slower. CRGB leds[NUM_LEDS]; const uint8_t brightnessCount = 5; uint8_t brightnessMap[brightnessCount] = { 16, 32, 64, 128, 255 }; uint8_t brightnessIndex = 0; // ten seconds per color palette makes a good demo // 20-120 is better for deployment uint8_t secondsPerPalette = 10; // COOLING: How much does the air cool as it rises? // Less cooling = taller flames. More cooling = shorter flames. // Default 50, suggested range 20-100 uint8_t cooling = 49; // SPARKING: What chance (out of 255) is there that a new spark will be lit? // Higher chance = more roaring fire. Lower chance = more flickery fire. // Default 120, suggested range 50-200. uint8_t sparking = 60; uint8_t speed = 30; /////////////////////////////////////////////////////////////////////// // Forward declarations of an array of cpt-city gradient palettes, and // a count of how many there are. The actual color palette definitions // are at the bottom of this file. extern const TProgmemRGBGradientPalettePtr gGradientPalettes[]; uint8_t gCurrentPaletteNumber = 0; CRGBPalette16 gCurrentPalette( CRGB::Black); CRGBPalette16 gTargetPalette( gGradientPalettes[0] ); CRGBPalette16 IceColors_p = CRGBPalette16(CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White); uint8_t currentPatternIndex = 0; // Index number of which pattern is current uint8_t autoplay = 0; uint8_t autoplayDuration = 10; unsigned long autoPlayTimeout = 0; uint8_t currentPaletteIndex = 0; uint8_t gHue = 0; // rotating "base color" used by many of the patterns CRGB solidColor = CRGB::Blue; // scale the brightness of all pixels down void dimAll(byte value) { for (int i = 0; i < NUM_LEDS; i++) { leds[i].nscale8(value); } } typedef void (*Pattern)(); typedef Pattern PatternList[]; typedef struct { Pattern pattern; String name; } PatternAndName; typedef PatternAndName PatternAndNameList[]; #include "Twinkles.h" #include "TwinkleFOX.h" #include "Map.h" #include "Noise.h" // List of patterns to cycle through. Each is defined as a separate function below. PatternAndNameList patterns = { { pride, "Pride" }, { colorWaves, "Color Waves" }, { cubeXGradientPalette, "Cube X Gradient Palette" }, { cubeYGradientPalette, "Cube Y Gradient Palette" }, { cubeZGradientPalette, "Cube Z Gradient Palette" }, { cubeXYGradientPalette, "Cube XY Gradient Palette" }, { cubeXZGradientPalette, "Cube XZ Gradient Palette" }, { cubeYZGradientPalette, "Cube YZ Gradient Palette" }, { cubeXYZGradientPalette, "Cube XYZ Gradient Palette" }, // 3d noise patterns { fireNoise3d, "Fire Noise 3D" }, { fireNoise23d, "Fire Noise 2 3D" }, { lavaNoise3d, "Lava Noise 3D" }, { rainbowNoise3d, "Rainbow Noise 3D" }, { rainbowStripeNoise3d, "Rainbow Stripe Noise 3D" }, { partyNoise3d, "Party Noise 3D" }, { forestNoise3d, "Forest Noise 3D" }, { cloudNoise3d, "Cloud Noise 3D" }, { oceanNoise3d, "Ocean Noise 3D" }, { blackAndWhiteNoise3d, "Black & White Noise 3D" }, { blackAndBlueNoise3d, "Black & Blue Noise 3D" }, // twinkle patterns { rainbowTwinkles, "Rainbow Twinkles" }, { snowTwinkles, "Snow Twinkles" }, { cloudTwinkles, "Cloud Twinkles" }, { incandescentTwinkles, "Incandescent Twinkles" }, // TwinkleFOX patterns { retroC9Twinkles, "Retro C9 Twinkles" }, { redWhiteTwinkles, "Red & White Twinkles" }, { blueWhiteTwinkles, "Blue & White Twinkles" }, { redGreenWhiteTwinkles, "Red, Green & White Twinkles" }, { fairyLightTwinkles, "Fairy Light Twinkles" }, { snow2Twinkles, "Snow 2 Twinkles" }, { hollyTwinkles, "Holly Twinkles" }, { iceTwinkles, "Ice Twinkles" }, { partyTwinkles, "Party Twinkles" }, { forestTwinkles, "Forest Twinkles" }, { lavaTwinkles, "Lava Twinkles" }, { fireTwinkles, "Fire Twinkles" }, { cloud2Twinkles, "Cloud 2 Twinkles" }, { oceanTwinkles, "Ocean Twinkles" }, { rainbow, "Rainbow" }, { rainbowWithGlitter, "Rainbow With Glitter" }, { rainbowSolid, "Solid Rainbow" }, { confetti, "Confetti" }, { sinelon, "Sinelon" }, { bpm, "Beat" }, { juggle, "Juggle" }, { fire, "Fire" }, { water, "Water" }, { showSolidColor, "Solid Color" } }; const uint8_t patternCount = ARRAY_SIZE(patterns); typedef struct { CRGBPalette16 palette; String name; } PaletteAndName; typedef PaletteAndName PaletteAndNameList[]; const CRGBPalette16 palettes[] = { RainbowColors_p, RainbowStripeColors_p, CloudColors_p, LavaColors_p, OceanColors_p, ForestColors_p, PartyColors_p, HeatColors_p }; const uint8_t paletteCount = ARRAY_SIZE(palettes); const String paletteNames[paletteCount] = { "Rainbow", "Rainbow Stripe", "Cloud", "Lava", "Ocean", "Forest", "Party", "Heat", }; #include "Fields.h" void setup() { WiFi.setSleepMode(WIFI_NONE_SLEEP); Serial.begin(115200); delay(100); Serial.setDebugOutput(true); FastLED.addLeds(leds, NUM_LEDS); // for WS2812 (Neopixel) //FastLED.addLeds(leds, NUM_LEDS); // for APA102 (Dotstar) FastLED.setDither(false); FastLED.setCorrection(TypicalLEDStrip); FastLED.setBrightness(brightness); FastLED.setMaxPowerInVoltsAndMilliamps(5, MILLI_AMPS); fill_solid(leds, NUM_LEDS, CRGB::Black); FastLED.show(); EEPROM.begin(512); loadSettings(); FastLED.setBrightness(brightness); // irReceiver.enableIRIn(); // Start the receiver Serial.println(); Serial.print( F("Heap: ") ); Serial.println(system_get_free_heap_size()); Serial.print( F("Boot Vers: ") ); Serial.println(system_get_boot_version()); Serial.print( F("CPU: ") ); Serial.println(system_get_cpu_freq()); Serial.print( F("SDK: ") ); Serial.println(system_get_sdk_version()); Serial.print( F("Chip ID: ") ); Serial.println(system_get_chip_id()); Serial.print( F("Flash ID: ") ); Serial.println(spi_flash_get_id()); Serial.print( F("Flash Size: ") ); Serial.println(ESP.getFlashChipRealSize()); Serial.print( F("Vcc: ") ); Serial.println(ESP.getVcc()); Serial.println(); SPIFFS.begin(); { Dir dir = SPIFFS.openDir("/"); while (dir.next()) { String fileName = dir.fileName(); size_t fileSize = dir.fileSize(); Serial.printf("FS File: %s, size: %s\n", fileName.c_str(), String(fileSize).c_str()); } Serial.printf("\n"); } // Set Hostname. String hostname(HOSTNAME); hostname += String(ESP.getChipId(), HEX); WiFi.hostname(hostname); char hostnameChar[hostname.length() + 1]; memset(hostnameChar, 0, hostname.length() + 1); for (uint8_t i = 0; i < hostname.length(); i++) hostnameChar[i] = hostname.charAt(i); MDNS.begin(hostnameChar); // Add service to MDNS-SD MDNS.addService("http", "tcp", 80); // Print hostname. Serial.println("Hostname: " + hostname); if (apMode) { WiFi.mode(WIFI_AP); // Do a little work to get a unique-ish name. Append the // last two bytes of the MAC (HEX'd) to "Thing-": uint8_t mac[WL_MAC_ADDR_LENGTH]; WiFi.softAPmacAddress(mac); String macID = String(mac[WL_MAC_ADDR_LENGTH - 2], HEX) + String(mac[WL_MAC_ADDR_LENGTH - 1], HEX); macID.toUpperCase(); String AP_NameString = "ESP8266-" + macID; char AP_NameChar[AP_NameString.length() + 1]; memset(AP_NameChar, 0, AP_NameString.length() + 1); for (int i = 0; i < AP_NameString.length(); i++) AP_NameChar[i] = AP_NameString.charAt(i); WiFi.softAP(AP_NameChar, WiFiAPPSK); Serial.printf("Connect to Wi-Fi access point: %s\n", AP_NameChar); Serial.println("and open http://192.168.4.1 in your browser"); } else { WiFi.mode(WIFI_STA); Serial.printf("Connecting to %s\n", ssid); if (String(WiFi.SSID()) != String(ssid)) { WiFi.begin(ssid, password); } } httpUpdateServer.setup(&webServer); webServer.on("/all", HTTP_GET, []() { String json = getFieldsJson(fields, fieldCount); webServer.send(200, "text/json", json); }); webServer.on("/fieldValue", HTTP_GET, []() { String name = webServer.arg("name"); String value = getFieldValue(name, fields, fieldCount); webServer.send(200, "text/json", value); }); webServer.on("/fieldValue", HTTP_POST, []() { String name = webServer.arg("name"); String value = webServer.arg("value"); String newValue = setFieldValue(name, value, fields, fieldCount); webServer.send(200, "text/json", newValue); }); webServer.on("/power", HTTP_POST, []() { String value = webServer.arg("value"); setPower(value.toInt()); sendInt(power); }); webServer.on("/cooling", HTTP_POST, []() { String value = webServer.arg("value"); cooling = value.toInt(); broadcastInt("cooling", cooling); sendInt(cooling); }); webServer.on("/sparking", HTTP_POST, []() { String value = webServer.arg("value"); sparking = value.toInt(); broadcastInt("sparking", sparking); sendInt(sparking); }); webServer.on("/speed", HTTP_POST, []() { String value = webServer.arg("value"); speed = value.toInt(); broadcastInt("speed", speed); sendInt(speed); }); webServer.on("/twinkleSpeed", HTTP_POST, []() { String value = webServer.arg("value"); twinkleSpeed = value.toInt(); if (twinkleSpeed < 0) twinkleSpeed = 0; else if (twinkleSpeed > 8) twinkleSpeed = 8; broadcastInt("twinkleSpeed", twinkleSpeed); sendInt(twinkleSpeed); }); webServer.on("/twinkleDensity", HTTP_POST, []() { String value = webServer.arg("value"); twinkleDensity = value.toInt(); if (twinkleDensity < 0) twinkleDensity = 0; else if (twinkleDensity > 8) twinkleDensity = 8; broadcastInt("twinkleDensity", twinkleDensity); sendInt(twinkleDensity); }); webServer.on("/solidColor", HTTP_POST, []() { String r = webServer.arg("r"); String g = webServer.arg("g"); String b = webServer.arg("b"); setSolidColor(r.toInt(), g.toInt(), b.toInt()); sendString(String(solidColor.r) + "," + String(solidColor.g) + "," + String(solidColor.b)); }); webServer.on("/pattern", HTTP_POST, []() { String value = webServer.arg("value"); setPattern(value.toInt()); sendInt(currentPatternIndex); }); webServer.on("/patternName", HTTP_POST, []() { String value = webServer.arg("value"); setPatternName(value); sendInt(currentPatternIndex); }); webServer.on("/palette", HTTP_POST, []() { String value = webServer.arg("value"); setPalette(value.toInt()); sendInt(currentPaletteIndex); }); webServer.on("/paletteName", HTTP_POST, []() { String value = webServer.arg("value"); setPaletteName(value); sendInt(currentPaletteIndex); }); webServer.on("/brightness", HTTP_POST, []() { String value = webServer.arg("value"); setBrightness(value.toInt()); sendInt(brightness); }); webServer.on("/autoplay", HTTP_POST, []() { String value = webServer.arg("value"); setAutoplay(value.toInt()); sendInt(autoplay); }); webServer.on("/autoplayDuration", HTTP_POST, []() { String value = webServer.arg("value"); setAutoplayDuration(value.toInt()); sendInt(autoplayDuration); }); //list directory webServer.on("/list", HTTP_GET, handleFileList); //load editor webServer.on("/edit", HTTP_GET, []() { if (!handleFileRead("/edit.htm")) webServer.send(404, "text/plain", "FileNotFound"); }); //create file webServer.on("/edit", HTTP_PUT, handleFileCreate); //delete file webServer.on("/edit", HTTP_DELETE, handleFileDelete); //first callback is called after the request has ended with all parsed arguments //second callback handles file uploads at that location webServer.on("/edit", HTTP_POST, []() { webServer.send(200, "text/plain", ""); }, handleFileUpload); webServer.serveStatic("/", SPIFFS, "/", "max-age=86400"); webServer.begin(); Serial.println("HTTP web server started"); webSocketsServer.begin(); webSocketsServer.onEvent(webSocketEvent); Serial.println("Web socket server started"); autoPlayTimeout = millis() + (autoplayDuration * 1000); } void sendInt(uint8_t value) { sendString(String(value)); } void sendString(String value) { webServer.send(200, "text/plain", value); } void broadcastInt(String name, uint8_t value) { String json = "{\"name\":\"" + name + "\",\"value\":" + String(value) + "}"; webSocketsServer.broadcastTXT(json); } void broadcastString(String name, String value) { String json = "{\"name\":\"" + name + "\",\"value\":\"" + String(value) + "\"}"; webSocketsServer.broadcastTXT(json); } void loop() { // Add entropy to random number generator; we use a lot of it. random16_add_entropy(random(65535)); webSocketsServer.loop(); webServer.handleClient(); // handleIrInput(); if (power == 0) { fill_solid(leds, NUM_LEDS, CRGB::Black); FastLED.show(); // FastLED.delay(15); return; } // EVERY_N_SECONDS(10) { // Serial.print( F("Heap: ") ); Serial.println(system_get_free_heap_size()); // } // change to a new cpt-city gradient palette EVERY_N_SECONDS( secondsPerPalette ) { gCurrentPaletteNumber = addmod8( gCurrentPaletteNumber, 1, gGradientPaletteCount); gTargetPalette = gGradientPalettes[ gCurrentPaletteNumber ]; } EVERY_N_MILLISECONDS(40) { // slowly blend the current palette to the next nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 8); gHue++; // slowly cycle the "base color" through the rainbow } if (autoplay && (millis() > autoPlayTimeout)) { adjustPattern(true); autoPlayTimeout = millis() + (autoplayDuration * 1000); } // Call the current pattern function once, updating the 'leds' array patterns[currentPatternIndex].pattern(); FastLED.show(); // insert a delay to keep the framerate modest // FastLED.delay(1000 / FRAMES_PER_SECOND); } void webSocketEvent(uint8_t num, WStype_t type, uint8_t * payload, size_t length) { switch (type) { case WStype_DISCONNECTED: Serial.printf("[%u] Disconnected!\n", num); break; case WStype_CONNECTED: { IPAddress ip = webSocketsServer.remoteIP(num); Serial.printf("[%u] Connected from %d.%d.%d.%d url: %s\n", num, ip[0], ip[1], ip[2], ip[3], payload); // send message to client // webSocketsServer.sendTXT(num, "Connected"); } break; case WStype_TEXT: Serial.printf("[%u] get Text: %s\n", num, payload); // send message to client // webSocketsServer.sendTXT(num, "message here"); // send data to all connected clients // webSocketsServer.broadcastTXT("message here"); break; case WStype_BIN: Serial.printf("[%u] get binary length: %u\n", num, length); hexdump(payload, length); // send message to client // webSocketsServer.sendBIN(num, payload, lenght); break; } } //void handleIrInput() //{ // InputCommand command = readCommand(); // // if (command != InputCommand::None) { // Serial.print("command: "); // Serial.println((int) command); // } // // switch (command) { // case InputCommand::Up: { // adjustPattern(true); // break; // } // case InputCommand::Down: { // adjustPattern(false); // break; // } // case InputCommand::Power: { // setPower(power == 0 ? 1 : 0); // break; // } // case InputCommand::BrightnessUp: { // adjustBrightness(true); // break; // } // case InputCommand::BrightnessDown: { // adjustBrightness(false); // break; // } // case InputCommand::PlayMode: { // toggle pause/play // setAutoplay(!autoplay); // break; // } // // // pattern buttons // // case InputCommand::Pattern1: { // setPattern(0); // break; // } // case InputCommand::Pattern2: { // setPattern(1); // break; // } // case InputCommand::Pattern3: { // setPattern(2); // break; // } // case InputCommand::Pattern4: { // setPattern(3); // break; // } // case InputCommand::Pattern5: { // setPattern(4); // break; // } // case InputCommand::Pattern6: { // setPattern(5); // break; // } // case InputCommand::Pattern7: { // setPattern(6); // break; // } // case InputCommand::Pattern8: { // setPattern(7); // break; // } // case InputCommand::Pattern9: { // setPattern(8); // break; // } // case InputCommand::Pattern10: { // setPattern(9); // break; // } // case InputCommand::Pattern11: { // setPattern(10); // break; // } // case InputCommand::Pattern12: { // setPattern(11); // break; // } // // // custom color adjustment buttons // // case InputCommand::RedUp: { // solidColor.red += 8; // setSolidColor(solidColor); // break; // } // case InputCommand::RedDown: { // solidColor.red -= 8; // setSolidColor(solidColor); // break; // } // case InputCommand::GreenUp: { // solidColor.green += 8; // setSolidColor(solidColor); // break; // } // case InputCommand::GreenDown: { // solidColor.green -= 8; // setSolidColor(solidColor); // break; // } // case InputCommand::BlueUp: { // solidColor.blue += 8; // setSolidColor(solidColor); // break; // } // case InputCommand::BlueDown: { // solidColor.blue -= 8; // setSolidColor(solidColor); // break; // } // // // color buttons // // case InputCommand::Red: { // setSolidColor(CRGB::Red); // break; // } // case InputCommand::RedOrange: { // setSolidColor(CRGB::OrangeRed); // break; // } // case InputCommand::Orange: { // setSolidColor(CRGB::Orange); // break; // } // case InputCommand::YellowOrange: { // setSolidColor(CRGB::Goldenrod); // break; // } // case InputCommand::Yellow: { // setSolidColor(CRGB::Yellow); // break; // } // // case InputCommand::Green: { // setSolidColor(CRGB::Green); // break; // } // case InputCommand::Lime: { // setSolidColor(CRGB::Lime); // break; // } // case InputCommand::Aqua: { // setSolidColor(CRGB::Aqua); // break; // } // case InputCommand::Teal: { // setSolidColor(CRGB::Teal); // break; // } // case InputCommand::Navy: { // setSolidColor(CRGB::Navy); // break; // } // // case InputCommand::Blue: { // setSolidColor(CRGB::Blue); // break; // } // case InputCommand::RoyalBlue: { // setSolidColor(CRGB::RoyalBlue); // break; // } // case InputCommand::Purple: { // setSolidColor(CRGB::Purple); // break; // } // case InputCommand::Indigo: { // setSolidColor(CRGB::Indigo); // break; // } // case InputCommand::Magenta: { // setSolidColor(CRGB::Magenta); // break; // } // // case InputCommand::White: { // setSolidColor(CRGB::White); // break; // } // case InputCommand::Pink: { // setSolidColor(CRGB::Pink); // break; // } // case InputCommand::LightPink: { // setSolidColor(CRGB::LightPink); // break; // } // case InputCommand::BabyBlue: { // setSolidColor(CRGB::CornflowerBlue); // break; // } // case InputCommand::LightBlue: { // setSolidColor(CRGB::LightBlue); // break; // } // } //} void loadSettings() { brightness = EEPROM.read(0); currentPatternIndex = EEPROM.read(1); if (currentPatternIndex < 0) currentPatternIndex = 0; else if (currentPatternIndex >= patternCount) currentPatternIndex = patternCount - 1; byte r = EEPROM.read(2); byte g = EEPROM.read(3); byte b = EEPROM.read(4); if (r == 0 && g == 0 && b == 0) { } else { solidColor = CRGB(r, g, b); } power = EEPROM.read(5); autoplay = EEPROM.read(6); autoplayDuration = EEPROM.read(7); currentPaletteIndex = EEPROM.read(8); if (currentPaletteIndex < 0) currentPaletteIndex = 0; else if (currentPaletteIndex >= paletteCount) currentPaletteIndex = paletteCount - 1; } void setPower(uint8_t value) { power = value == 0 ? 0 : 1; EEPROM.write(5, power); EEPROM.commit(); broadcastInt("power", power); } void setAutoplay(uint8_t value) { autoplay = value == 0 ? 0 : 1; EEPROM.write(6, autoplay); EEPROM.commit(); broadcastInt("autoplay", autoplay); } void setAutoplayDuration(uint8_t value) { autoplayDuration = value; EEPROM.write(7, autoplayDuration); EEPROM.commit(); autoPlayTimeout = millis() + (autoplayDuration * 1000); broadcastInt("autoplayDuration", autoplayDuration); } void setSolidColor(CRGB color) { setSolidColor(color.r, color.g, color.b); } void setSolidColor(uint8_t r, uint8_t g, uint8_t b) { solidColor = CRGB(r, g, b); EEPROM.write(2, r); EEPROM.write(3, g); EEPROM.write(4, b); EEPROM.commit(); setPattern(patternCount - 1); broadcastString("color", String(solidColor.r) + "," + String(solidColor.g) + "," + String(solidColor.b)); } // increase or decrease the current pattern number, and wrap around at the ends void adjustPattern(bool up) { if (up) currentPatternIndex++; else currentPatternIndex--; // wrap around at the ends if (currentPatternIndex < 0) currentPatternIndex = patternCount - 1; if (currentPatternIndex >= patternCount) currentPatternIndex = 0; if (autoplay == 0) { EEPROM.write(1, currentPatternIndex); EEPROM.commit(); } broadcastInt("pattern", currentPatternIndex); } void setPattern(uint8_t value) { if (value >= patternCount) value = patternCount - 1; currentPatternIndex = value; if (autoplay == 0) { EEPROM.write(1, currentPatternIndex); EEPROM.commit(); } broadcastInt("pattern", currentPatternIndex); } void setPatternName(String name) { for (uint8_t i = 0; i < patternCount; i++) { if (patterns[i].name == name) { setPattern(i); break; } } } void setPalette(uint8_t value) { if (value >= paletteCount) value = paletteCount - 1; currentPaletteIndex = value; EEPROM.write(8, currentPaletteIndex); EEPROM.commit(); broadcastInt("palette", currentPaletteIndex); } void setPaletteName(String name) { for (uint8_t i = 0; i < paletteCount; i++) { if (paletteNames[i] == name) { setPalette(i); break; } } } void adjustBrightness(bool up) { if (up && brightnessIndex < brightnessCount - 1) brightnessIndex++; else if (!up && brightnessIndex > 0) brightnessIndex--; brightness = brightnessMap[brightnessIndex]; FastLED.setBrightness(brightness); EEPROM.write(0, brightness); EEPROM.commit(); broadcastInt("brightness", brightness); } void setBrightness(uint8_t value) { if (value > 255) value = 255; else if (value < 0) value = 0; brightness = value; FastLED.setBrightness(brightness); EEPROM.write(0, brightness); EEPROM.commit(); broadcastInt("brightness", brightness); } void strandTest() { static uint8_t i = 0; EVERY_N_SECONDS(1) { i++; if (i >= NUM_LEDS) i = 0; } fill_solid(leds, NUM_LEDS, CRGB::Black); leds[i] = solidColor; } void showSolidColor() { fill_solid(leds, NUM_LEDS, solidColor); } // Patterns from FastLED example DemoReel100: https://github.com/FastLED/FastLED/blob/master/examples/DemoReel100/DemoReel100.ino void rainbow() { // FastLED's built-in rainbow generator fill_rainbow( leds, NUM_LEDS, gHue, 255 / NUM_LEDS); } void rainbowWithGlitter() { // built-in FastLED rainbow, plus some random sparkly glitter rainbow(); addGlitter(80); } void rainbowSolid() { fill_solid(leds, NUM_LEDS, CHSV(gHue, 255, 255)); } void confetti() { // random colored speckles that blink in and fade smoothly fadeToBlackBy( leds, NUM_LEDS, 10); int pos = random16(NUM_LEDS); // leds[pos] += CHSV( gHue + random8(64), 200, 255); leds[pos] += ColorFromPalette(palettes[currentPaletteIndex], gHue + random8(64)); } void sinelon() { // a colored dot sweeping back and forth, with fading trails fadeToBlackBy( leds, NUM_LEDS, 20); int pos = beatsin16(speed, 0, NUM_LEDS); static int prevpos = 0; CRGB color = ColorFromPalette(palettes[currentPaletteIndex], gHue, 255); if ( pos < prevpos ) { fill_solid( leds + pos, (prevpos - pos) + 1, color); } else { fill_solid( leds + prevpos, (pos - prevpos) + 1, color); } prevpos = pos; } void bpm() { // colored stripes pulsing at a defined Beats-Per-Minute (BPM) uint8_t beat = beatsin8( speed, 64, 255); CRGBPalette16 palette = palettes[currentPaletteIndex]; for ( int i = 0; i < NUM_LEDS; i++) { leds[i] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10)); } } void juggle() { static uint8_t numdots = 4; // Number of dots in use. static uint8_t faderate = 2; // How long should the trails be. Very low value = longer trails. static uint8_t hueinc = 255 / numdots - 1; // Incremental change in hue between each dot. static uint8_t thishue = 0; // Starting hue. static uint8_t curhue = 0; // The current hue static uint8_t thissat = 255; // Saturation of the colour. static uint8_t thisbright = 255; // How bright should the LED/display be. static uint8_t basebeat = 5; // Higher = faster movement. static uint8_t lastSecond = 99; // Static variable, means it's only defined once. This is our 'debounce' variable. uint8_t secondHand = (millis() / 1000) % 30; // IMPORTANT!!! Change '30' to a different value to change duration of the loop. if (lastSecond != secondHand) { // Debounce to make sure we're not repeating an assignment. lastSecond = secondHand; switch (secondHand) { case 0: numdots = 1; basebeat = 20; hueinc = 16; faderate = 2; thishue = 0; break; // You can change values here, one at a time , or altogether. case 10: numdots = 4; basebeat = 10; hueinc = 16; faderate = 8; thishue = 128; break; case 20: numdots = 8; basebeat = 3; hueinc = 0; faderate = 8; thishue = random8(); break; // Only gets called once, and not continuously for the next several seconds. Therefore, no rainbows. case 30: break; } } // Several colored dots, weaving in and out of sync with each other curhue = thishue; // Reset the hue values. fadeToBlackBy(leds, NUM_LEDS, faderate); for ( int i = 0; i < numdots; i++) { //beat16 is a FastLED 3.1 function leds[beatsin16(basebeat + i + numdots, 0, NUM_LEDS)] += CHSV(gHue + curhue, thissat, thisbright); curhue += hueinc; } } void fire() { heatMap(HeatColors_p, true); } void water() { heatMap(IceColors_p, false); } // Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5 // This function draws rainbows with an ever-changing, // widely-varying set of parameters. void pride() { static uint16_t sPseudotime = 0; static uint16_t sLastMillis = 0; static uint16_t sHue16 = 0; uint8_t sat8 = beatsin88( 87, 220, 250); uint8_t brightdepth = beatsin88( 341, 96, 224); uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256)); uint8_t msmultiplier = beatsin88(147, 23, 60); uint16_t hue16 = sHue16;//gHue * 256; uint16_t hueinc16 = beatsin88(113, 1, 3000); uint16_t ms = millis(); uint16_t deltams = ms - sLastMillis ; sLastMillis = ms; sPseudotime += deltams * msmultiplier; sHue16 += deltams * beatsin88( 400, 5, 9); uint16_t brightnesstheta16 = sPseudotime; for ( uint16_t i = 0 ; i < NUM_LEDS; i++) { hue16 += hueinc16; uint8_t hue8 = hue16 / 256; brightnesstheta16 += brightnessthetainc16; uint16_t b16 = sin16( brightnesstheta16 ) + 32768; uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536; uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536; bri8 += (255 - brightdepth); CRGB newcolor = CHSV( hue8, sat8, bri8); uint16_t pixelnumber = i; pixelnumber = (NUM_LEDS - 1) - pixelnumber; nblend( leds[pixelnumber], newcolor, 64); } } void radialPaletteShift() { for (uint8_t i = 0; i < NUM_LEDS; i++) { // leds[i] = ColorFromPalette( gCurrentPalette, gHue + sin8(i*16), brightness); leds[i] = ColorFromPalette(gCurrentPalette, i + gHue, 255, LINEARBLEND); } } // based on FastLED example Fire2012WithPalette: https://github.com/FastLED/FastLED/blob/master/examples/Fire2012WithPalette/Fire2012WithPalette.ino void heatMap(CRGBPalette16 palette, bool up) { fill_solid(leds, NUM_LEDS, CRGB::Black); // Add entropy to random number generator; we use a lot of it. random16_add_entropy(random(256)); // Array of temperature readings at each simulation cell static byte heat[256]; byte colorindex; // Step 1. Cool down every cell a little for ( uint16_t i = 0; i < NUM_LEDS; i++) { heat[i] = qsub8( heat[i], random8(0, ((cooling * 10) / NUM_LEDS) + 2)); } // Step 2. Heat from each cell drifts 'up' and diffuses a little for ( uint16_t k = NUM_LEDS - 1; k >= 2; k--) { heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3; } // Step 3. Randomly ignite new 'sparks' of heat near the bottom if ( random8() < sparking ) { int y = random8(7); heat[y] = qadd8( heat[y], random8(160, 255) ); } // Step 4. Map from heat cells to LED colors for ( uint16_t j = 0; j < NUM_LEDS; j++) { // Scale the heat value from 0-255 down to 0-240 // for best results with color palettes. colorindex = scale8(heat[j], 190); CRGB color = ColorFromPalette(palette, colorindex); if (up) { leds[j] = color; } else { leds[(NUM_LEDS - 1) - j] = color; } } } void addGlitter( uint8_t chanceOfGlitter) { if ( random8() < chanceOfGlitter) { leds[ random16(NUM_LEDS) ] += CRGB::White; } } /////////////////////////////////////////////////////////////////////// // Forward declarations of an array of cpt-city gradient palettes, and // a count of how many there are. The actual color palette definitions // are at the bottom of this file. extern const TProgmemRGBGradientPalettePtr gGradientPalettes[]; extern const uint8_t gGradientPaletteCount; uint8_t beatsaw8( accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255, uint32_t timebase = 0, uint8_t phase_offset = 0) { uint8_t beat = beat8( beats_per_minute, timebase); uint8_t beatsaw = beat + phase_offset; uint8_t rangewidth = highest - lowest; uint8_t scaledbeat = scale8( beatsaw, rangewidth); uint8_t result = lowest + scaledbeat; return result; } void colorWaves() { colorwaves( leds, NUM_LEDS, gCurrentPalette); } // ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb // This function draws color waves with an ever-changing, // widely-varying set of parameters, using a color palette. void colorwaves( CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette) { static uint16_t sPseudotime = 0; static uint16_t sLastMillis = 0; static uint16_t sHue16 = 0; // uint8_t sat8 = beatsin88( 87, 220, 250); uint8_t brightdepth = beatsin88( 341, 96, 224); uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256)); uint8_t msmultiplier = beatsin88(147, 23, 60); uint16_t hue16 = sHue16;//gHue * 256; uint16_t hueinc16 = beatsin88(113, 300, 1500); uint16_t ms = millis(); uint16_t deltams = ms - sLastMillis ; sLastMillis = ms; sPseudotime += deltams * msmultiplier; sHue16 += deltams * beatsin88( 400, 5, 9); uint16_t brightnesstheta16 = sPseudotime; for ( uint16_t i = 0 ; i < numleds; i++) { hue16 += hueinc16; uint8_t hue8 = hue16 / 256; uint16_t h16_128 = hue16 >> 7; if ( h16_128 & 0x100) { hue8 = 255 - (h16_128 >> 1); } else { hue8 = h16_128 >> 1; } brightnesstheta16 += brightnessthetainc16; uint16_t b16 = sin16( brightnesstheta16 ) + 32768; uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536; uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536; bri8 += (255 - brightdepth); uint8_t index = hue8; //index = triwave8( index); index = scale8( index, 240); CRGB newcolor = ColorFromPalette( palette, index, bri8); uint16_t pixelnumber = i; pixelnumber = (numleds - 1) - pixelnumber; nblend( ledarray[pixelnumber], newcolor, 128); } } // Alternate rendering function just scrolls the current palette // across the defined LED strip. void palettetest( CRGB* ledarray, uint16_t numleds, const CRGBPalette16& gCurrentPalette) { static uint8_t startindex = 0; startindex--; fill_palette( ledarray, numleds, startindex, (256 / NUM_LEDS) + 1, gCurrentPalette, 255, LINEARBLEND); }