Adapted code to work with the DIY-Nanoleafs

This commit is contained in:
Lorenz Nimmervoll 2019-01-13 16:45:50 +01:00
parent 757e3b2fd8
commit e57869202e
11 changed files with 1929 additions and 672 deletions

3
.vs/ProjectSettings.json Normal file
View File

@ -0,0 +1,3 @@
{
"CurrentProjectSetting": "Visual Micro"
}

113
.vs/__vm/.vsarduino.h Normal file
View File

@ -0,0 +1,113 @@
/*
Editor: https://www.visualmicro.com/
visual micro and the arduino ide ignore this code during compilation. this code is automatically maintained by visualmicro, manual changes to this file will be overwritten
the contents of the Visual Micro sketch sub folder can be deleted prior to publishing a project
all non-arduino files created by visual micro and all visual studio project or solution files can be freely deleted and are not required to compile a sketch (do not delete your own code!).
note: debugger breakpoints are stored in '.sln' or '.asln' files, knowledge of last uploaded breakpoints is stored in the upload.vmps.xml file. Both files are required to continue a previous debug session without needing to compile and upload again
Hardware: WeMos D1 R2 & mini, Platform=esp8266, Package=esp8266
*/
#if defined(_VMICRO_INTELLISENSE)
#ifndef _VSARDUINO_H_
#define _VSARDUINO_H_
#define __ESP8266_ESp8266__
#define __ESP8266_ESP8266__
#define __ets__
#define ICACHE_FLASH
#define F_CPU 80000000L
#define LWIP_OPEN_SRC
#define TCP_MSS 536
#define ARDUINO 10807
#define ARDUINO_ESP8266_WEMOS_D1MINI
#define ARDUINO_ARCH_ESP8266
#define ESP8266
#define __cplusplus 201103L
#undef __cplusplus
#define __cplusplus 201103L
#define __STDC__
#define __ARM__
#define __arm__
#define __inline__
#define __asm__(x)
#define __asm__
#define __extension__
#define __ATTR_PURE__
#define __ATTR_CONST__
#define __volatile__
#define __ASM
#define __INLINE
#define __attribute__(noinline)
//#define _STD_BEGIN
//#define EMIT
#define WARNING
#define _Lockit
#define __CLR_OR_THIS_CALL
#define C4005
#define _NEW
//typedef int uint8_t;
//#define __ARMCC_VERSION 400678
//#define PROGMEM
//#define string_literal
//
//#define prog_void
//#define PGM_VOID_P int
//
typedef int _read;
typedef int _seek;
typedef int _write;
typedef int _close;
typedef int __cleanup;
//#define inline
#define __builtin_clz
#define __builtin_clzl
#define __builtin_clzll
#define __builtin_labs
#define __builtin_va_list
typedef int __gnuc_va_list;
#define __ATOMIC_ACQ_REL
#define __CHAR_BIT__
#define _EXFUN()
typedef unsigned char byte;
extern "C" void __cxa_pure_virtual() {;}
typedef long __INTPTR_TYPE__ ;
typedef long __UINTPTR_TYPE__ ;
typedef long __SIZE_TYPE__ ;
typedef long __PTRDIFF_TYPE__;
#include "new"
#include "Esp.h"
#include <arduino.h>
#include <pins_arduino.h>
#include "..\generic\Common.h"
#include "..\generic\pins_arduino.h"
#undef F
#define F(string_literal) ((const PROGMEM char *)(string_literal))
#undef PSTR
#define PSTR(string_literal) ((const PROGMEM char *)(string_literal))
//current vc++ does not understand this syntax so use older arduino example for intellisense
//todo:move to the new clang/gcc project types.
#define interrupts() sei()
#define noInterrupts() cli()
#include "esp8266-fastled-webserver.ino"
#endif
#endif

File diff suppressed because it is too large Load Diff

BIN
.vs/slnx.sqlite Normal file

Binary file not shown.

47
CppProperties.json Normal file
View File

@ -0,0 +1,47 @@
{
"configurations": [
{
"name": "Visual Micro",
"intelliSenseMode": "msvc-x64",
"includePath": [
"${projectRoot}..\\esp8266-fastled-webserver",
"D:\\Music\\Documents\\Arduino\\libraries\\FastLED",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\ESP8266WiFi\\src",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\ESP8266WebServer\\src",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\ESP8266HTTPUpdateServer\\src",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries\\EEPROM",
"S:\\Software\\Arduino\\libraries",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\libraries",
"D:\\Music\\Documents\\Arduino\\libraries",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266\\libb64",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266\\spiffs",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\cores\\esp8266\\umm_malloc",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\variants\\d1_mini",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\lwip2\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\libc\\xtensa-lx106-elf\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\xtensa-lx106-elf\\include\\c++\\4.8.2",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\xtensa-lx106-elf\\include\\c++\\4.8.2\\xtensa-lx106-elf",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\xtensa-lx106-elf\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\tools\\xtensa-lx106-elf-gcc\\1.20.0-26-gb404fb9-2\\lib\\gcc\\xtensa-lx106-elf\\4.8.2\\include",
"${projectRoot}..\\..\\..\\..\\AppData\\Local\\arduino15\\packages\\esp8266\\hardware\\esp8266\\2.4.1\\tools\\sdk\\include"
],
"defines": [
"__ESP8266_ESp8266__",
"__ESP8266_ESP8266__",
"__ets__",
"ICACHE_FLASH",
"F_CPU=80000000L",
"LWIP_OPEN_SRC",
"TCP_MSS=536",
"ARDUINO=10807",
"ARDUINO_ESP8266_WEMOS_D1MINI",
"ARDUINO_ARCH_ESP8266",
"ESP8266",
"__cplusplus=201103L",
"_VMICRO_INTELLISENSE"
]
}
]
}

View File

@ -81,6 +81,14 @@ String getAutoplayDuration() {
return String(autoplayDuration);
}
String getAllLeafs() {
return String(allLeafs);
}
String getSelectedLeaf() {
return String(selectedLeaf);
}
String getSolidColor() {
return String(solidColor.r) + "," + String(solidColor.g) + "," + String(solidColor.b);
}
@ -114,6 +122,9 @@ FieldList fields = {
{ "autoplay", "Autoplay", SectionFieldType },
{ "autoplay", "Autoplay", BooleanFieldType, 0, 1, getAutoplay },
{ "autoplayDuration", "Autoplay Duration", NumberFieldType, 0, 255, getAutoplayDuration },
{ "allLeafs", "Color Leafs", SectionFieldType },
{ "allLeafs", "Color All Leafs", BooleanFieldType, 0, 1, getAllLeafs },
{ "selectedLeaf", "Select Leaf to Color", NumberFieldType, 1, LEAFCOUNT, getSelectedLeaf },
{ "solidColor", "Solid Color", SectionFieldType },
{ "solidColor", "Color", ColorFieldType, 0, 255, getSolidColor },
{ "fire", "Fire & Water", SectionFieldType },

View File

@ -10,57 +10,61 @@
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 16 bytes of program space.
DEFINE_GRADIENT_PALETTE( ib_jul01_gp ) {
DEFINE_GRADIENT_PALETTE(ib_jul01_gp) {
0, 194, 1, 1,
94, 1, 29, 18,
132, 57,131, 28,
255, 113, 1, 1};
132, 57, 131, 28,
255, 113, 1, 1
};
// Gradient palette "es_vintage_57_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/vintage/tn/es_vintage_57.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_vintage_57_gp ) {
DEFINE_GRADIENT_PALETTE(es_vintage_57_gp) {
0, 2, 1, 1,
53, 18, 1, 0,
104, 69, 29, 1,
153, 167,135, 10,
255, 46, 56, 4};
153, 167, 135, 10,
255, 46, 56, 4
};
// Gradient palette "es_vintage_01_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/vintage/tn/es_vintage_01.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 32 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_vintage_01_gp ) {
DEFINE_GRADIENT_PALETTE(es_vintage_01_gp) {
0, 4, 1, 1,
51, 16, 0, 1,
76, 97,104, 3,
101, 255,131, 19,
76, 97, 104, 3,
101, 255, 131, 19,
127, 67, 9, 4,
153, 16, 0, 1,
229, 4, 1, 1,
255, 4, 1, 1};
255, 4, 1, 1
};
// Gradient palette "es_rivendell_15_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/rivendell/tn/es_rivendell_15.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_rivendell_15_gp ) {
DEFINE_GRADIENT_PALETTE(es_rivendell_15_gp) {
0, 1, 14, 5,
101, 16, 36, 14,
165, 56, 68, 30,
242, 150,156, 99,
255, 150,156, 99};
242, 150, 156, 99,
255, 150, 156, 99
};
// Gradient palette "rgi_15_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ds/rgi/tn/rgi_15.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 36 bytes of program space.
DEFINE_GRADIENT_PALETTE( rgi_15_gp ) {
DEFINE_GRADIENT_PALETTE(rgi_15_gp) {
0, 4, 1, 31,
31, 55, 1, 16,
63, 197, 3, 7,
@ -69,238 +73,256 @@ DEFINE_GRADIENT_PALETTE( rgi_15_gp ) {
159, 39, 6, 33,
191, 112, 13, 32,
223, 56, 9, 35,
255, 22, 6, 38};
255, 22, 6, 38
};
// Gradient palette "retro2_16_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ma/retro2/tn/retro2_16.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 8 bytes of program space.
DEFINE_GRADIENT_PALETTE( retro2_16_gp ) {
0, 188,135, 1,
255, 46, 7, 1};
DEFINE_GRADIENT_PALETTE(retro2_16_gp) {
0, 188, 135, 1,
255, 46, 7, 1
};
// Gradient palette "Analogous_1_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/red/tn/Analogous_1.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( Analogous_1_gp ) {
0, 3, 0,255,
63, 23, 0,255,
127, 67, 0,255,
DEFINE_GRADIENT_PALETTE(Analogous_1_gp) {
0, 3, 0, 255,
63, 23, 0, 255,
127, 67, 0, 255,
191, 142, 0, 45,
255, 255, 0, 0};
255, 255, 0, 0
};
// Gradient palette "es_pinksplash_08_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/pink_splash/tn/es_pinksplash_08.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_pinksplash_08_gp ) {
0, 126, 11,255,
DEFINE_GRADIENT_PALETTE(es_pinksplash_08_gp) {
0, 126, 11, 255,
127, 197, 1, 22,
175, 210,157,172,
221, 157, 3,112,
255, 157, 3,112};
175, 210, 157, 172,
221, 157, 3, 112,
255, 157, 3, 112
};
// Gradient palette "es_pinksplash_07_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/pink_splash/tn/es_pinksplash_07.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_pinksplash_07_gp ) {
DEFINE_GRADIENT_PALETTE(es_pinksplash_07_gp) {
0, 229, 1, 1,
61, 242, 4, 63,
101, 255, 12,255,
127, 249, 81,252,
153, 255, 11,235,
101, 255, 12, 255,
127, 249, 81, 252,
153, 255, 11, 235,
193, 244, 5, 68,
255, 232, 1, 5};
255, 232, 1, 5
};
// Gradient palette "Coral_reef_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/other/tn/Coral_reef.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( Coral_reef_gp ) {
0, 40,199,197,
50, 10,152,155,
96, 1,111,120,
96, 43,127,162,
139, 10, 73,111,
255, 1, 34, 71};
DEFINE_GRADIENT_PALETTE(Coral_reef_gp) {
0, 40, 199, 197,
50, 10, 152, 155,
96, 1, 111, 120,
96, 43, 127, 162,
139, 10, 73, 111,
255, 1, 34, 71
};
// Gradient palette "es_ocean_breeze_068_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/ocean_breeze/tn/es_ocean_breeze_068.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_ocean_breeze_068_gp ) {
0, 100,156,153,
51, 1, 99,137,
DEFINE_GRADIENT_PALETTE(es_ocean_breeze_068_gp) {
0, 100, 156, 153,
51, 1, 99, 137,
101, 1, 68, 84,
104, 35,142,168,
178, 0, 63,117,
255, 1, 10, 10};
104, 35, 142, 168,
178, 0, 63, 117,
255, 1, 10, 10
};
// Gradient palette "es_ocean_breeze_036_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/ocean_breeze/tn/es_ocean_breeze_036.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 16 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_ocean_breeze_036_gp ) {
DEFINE_GRADIENT_PALETTE(es_ocean_breeze_036_gp) {
0, 1, 6, 7,
89, 1, 99,111,
153, 144,209,255,
255, 0, 73, 82};
89, 1, 99, 111,
153, 144, 209, 255,
255, 0, 73, 82
};
// Gradient palette "departure_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/mjf/tn/departure.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 88 bytes of program space.
DEFINE_GRADIENT_PALETTE( departure_gp ) {
DEFINE_GRADIENT_PALETTE(departure_gp) {
0, 8, 3, 0,
42, 23, 7, 0,
63, 75, 38, 6,
84, 169, 99, 38,
106, 213,169,119,
116, 255,255,255,
138, 135,255,138,
148, 22,255, 24,
170, 0,255, 0,
191, 0,136, 0,
106, 213, 169, 119,
116, 255, 255, 255,
138, 135, 255, 138,
148, 22, 255, 24,
170, 0, 255, 0,
191, 0, 136, 0,
212, 0, 55, 0,
255, 0, 55, 0};
255, 0, 55, 0
};
// Gradient palette "es_landscape_64_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/landscape/tn/es_landscape_64.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 36 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_landscape_64_gp ) {
DEFINE_GRADIENT_PALETTE(es_landscape_64_gp) {
0, 0, 0, 0,
37, 2, 25, 1,
76, 15,115, 5,
127, 79,213, 1,
128, 126,211, 47,
130, 188,209,247,
153, 144,182,205,
204, 59,117,250,
255, 1, 37,192};
76, 15, 115, 5,
127, 79, 213, 1,
128, 126, 211, 47,
130, 188, 209, 247,
153, 144, 182, 205,
204, 59, 117, 250,
255, 1, 37, 192
};
// Gradient palette "es_landscape_33_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/landscape/tn/es_landscape_33.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_landscape_33_gp ) {
DEFINE_GRADIENT_PALETTE(es_landscape_33_gp) {
0, 1, 5, 0,
19, 32, 23, 1,
38, 161, 55, 1,
63, 229,144, 1,
66, 39,142, 74,
255, 1, 4, 1};
63, 229, 144, 1,
66, 39, 142, 74,
255, 1, 4, 1
};
// Gradient palette "rainbowsherbet_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ma/icecream/tn/rainbowsherbet.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( rainbowsherbet_gp ) {
DEFINE_GRADIENT_PALETTE(rainbowsherbet_gp) {
0, 255, 33, 4,
43, 255, 68, 25,
86, 255, 7, 25,
127, 255, 82,103,
170, 255,255,242,
209, 42,255, 22,
255, 87,255, 65};
127, 255, 82, 103,
170, 255, 255, 242,
209, 42, 255, 22,
255, 87, 255, 65
};
// Gradient palette "gr65_hult_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/hult/tn/gr65_hult.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( gr65_hult_gp ) {
0, 247,176,247,
48, 255,136,255,
89, 220, 29,226,
160, 7, 82,178,
216, 1,124,109,
255, 1,124,109};
DEFINE_GRADIENT_PALETTE(gr65_hult_gp) {
0, 247, 176, 247,
48, 255, 136, 255,
89, 220, 29, 226,
160, 7, 82, 178,
216, 1, 124, 109,
255, 1, 124, 109
};
// Gradient palette "gr64_hult_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/hult/tn/gr64_hult.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 32 bytes of program space.
DEFINE_GRADIENT_PALETTE( gr64_hult_gp ) {
0, 1,124,109,
DEFINE_GRADIENT_PALETTE(gr64_hult_gp) {
0, 1, 124, 109,
66, 1, 93, 79,
104, 52, 65, 1,
130, 115,127, 1,
130, 115, 127, 1,
150, 52, 65, 1,
201, 1, 86, 72,
239, 0, 55, 45,
255, 0, 55, 45};
255, 0, 55, 45
};
// Gradient palette "GMT_drywet_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/gmt/tn/GMT_drywet.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( GMT_drywet_gp ) {
DEFINE_GRADIENT_PALETTE(GMT_drywet_gp) {
0, 47, 30, 2,
42, 213,147, 24,
84, 103,219, 52,
127, 3,219,207,
170, 1, 48,214,
212, 1, 1,111,
255, 1, 7, 33};
42, 213, 147, 24,
84, 103, 219, 52,
127, 3, 219, 207,
170, 1, 48, 214,
212, 1, 1, 111,
255, 1, 7, 33
};
// Gradient palette "ib15_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ing/general/tn/ib15.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 24 bytes of program space.
DEFINE_GRADIENT_PALETTE( ib15_gp ) {
0, 113, 91,147,
DEFINE_GRADIENT_PALETTE(ib15_gp) {
0, 113, 91, 147,
72, 157, 88, 78,
89, 208, 85, 33,
107, 255, 29, 11,
141, 137, 31, 39,
255, 59, 33, 89};
255, 59, 33, 89
};
// Gradient palette "Fuschia_7_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/ds/fuschia/tn/Fuschia-7.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( Fuschia_7_gp ) {
0, 43, 3,153,
63, 100, 4,103,
DEFINE_GRADIENT_PALETTE(Fuschia_7_gp) {
0, 43, 3, 153,
63, 100, 4, 103,
127, 188, 5, 66,
191, 161, 11,115,
255, 135, 20,182};
191, 161, 11, 115,
255, 135, 20, 182
};
// Gradient palette "es_emerald_dragon_08_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/emerald_dragon/tn/es_emerald_dragon_08.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 16 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_emerald_dragon_08_gp ) {
0, 97,255, 1,
101, 47,133, 1,
DEFINE_GRADIENT_PALETTE(es_emerald_dragon_08_gp) {
0, 97, 255, 1,
101, 47, 133, 1,
178, 13, 43, 1,
255, 2, 10, 1};
255, 2, 10, 1
};
// Gradient palette "lava_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/neota/elem/tn/lava.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 52 bytes of program space.
DEFINE_GRADIENT_PALETTE( lava_gp ) {
DEFINE_GRADIENT_PALETTE(lava_gp) {
0, 0, 0, 0,
46, 18, 0, 0,
96, 113, 0, 0,
@ -308,162 +330,173 @@ DEFINE_GRADIENT_PALETTE( lava_gp ) {
119, 175, 17, 1,
146, 213, 44, 2,
174, 255, 82, 4,
188, 255,115, 4,
202, 255,156, 4,
218, 255,203, 4,
234, 255,255, 4,
244, 255,255, 71,
255, 255,255,255};
188, 255, 115, 4,
202, 255, 156, 4,
218, 255, 203, 4,
234, 255, 255, 4,
244, 255, 255, 71,
255, 255, 255, 255
};
// Gradient palette "fire_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/neota/elem/tn/fire.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( fire_gp ) {
DEFINE_GRADIENT_PALETTE(fire_gp) {
0, 1, 1, 0,
76, 32, 5, 0,
146, 192, 24, 0,
197, 220,105, 5,
240, 252,255, 31,
250, 252,255,111,
255, 255,255,255};
197, 220, 105, 5,
240, 252, 255, 31,
250, 252, 255, 111,
255, 255, 255, 255
};
// Gradient palette "Colorfull_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Colorfull.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 44 bytes of program space.
DEFINE_GRADIENT_PALETTE( Colorfull_gp ) {
DEFINE_GRADIENT_PALETTE(Colorfull_gp) {
0, 10, 85, 5,
25, 29,109, 18,
60, 59,138, 42,
25, 29, 109, 18,
60, 59, 138, 42,
93, 83, 99, 52,
106, 110, 66, 64,
109, 123, 49, 65,
113, 139, 35, 66,
116, 192,117, 98,
124, 255,255,137,
168, 100,180,155,
255, 22,121,174};
116, 192, 117, 98,
124, 255, 255, 137,
168, 100, 180, 155,
255, 22, 121, 174
};
// Gradient palette "Magenta_Evening_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Magenta_Evening.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( Magenta_Evening_gp ) {
DEFINE_GRADIENT_PALETTE(Magenta_Evening_gp) {
0, 71, 27, 39,
31, 130, 11, 51,
63, 213, 2, 64,
70, 232, 1, 66,
76, 252, 1, 69,
108, 123, 2, 51,
255, 46, 9, 35};
255, 46, 9, 35
};
// Gradient palette "Pink_Purple_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Pink_Purple.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 44 bytes of program space.
DEFINE_GRADIENT_PALETTE( Pink_Purple_gp ) {
DEFINE_GRADIENT_PALETTE(Pink_Purple_gp) {
0, 19, 2, 39,
25, 26, 4, 45,
51, 33, 6, 52,
76, 68, 62,125,
102, 118,187,240,
109, 163,215,247,
114, 217,244,255,
122, 159,149,221,
149, 113, 78,188,
183, 128, 57,155,
255, 146, 40,123};
76, 68, 62, 125,
102, 118, 187, 240,
109, 163, 215, 247,
114, 217, 244, 255,
122, 159, 149, 221,
149, 113, 78, 188,
183, 128, 57, 155,
255, 146, 40, 123
};
// Gradient palette "Sunset_Real_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Sunset_Real.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( Sunset_Real_gp ) {
DEFINE_GRADIENT_PALETTE(Sunset_Real_gp) {
0, 120, 0, 0,
22, 179, 22, 0,
51, 255,104, 0,
51, 255, 104, 0,
85, 167, 22, 18,
135, 100, 0,103,
198, 16, 0,130,
255, 0, 0,160};
135, 100, 0, 103,
198, 16, 0, 130,
255, 0, 0, 160
};
// Gradient palette "es_autumn_19_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/es/autumn/tn/es_autumn_19.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 52 bytes of program space.
DEFINE_GRADIENT_PALETTE( es_autumn_19_gp ) {
DEFINE_GRADIENT_PALETTE(es_autumn_19_gp) {
0, 26, 1, 1,
51, 67, 4, 1,
84, 118, 14, 1,
104, 137,152, 52,
104, 137, 152, 52,
112, 113, 65, 1,
122, 133,149, 59,
124, 137,152, 52,
122, 133, 149, 59,
124, 137, 152, 52,
135, 113, 65, 1,
142, 139,154, 46,
142, 139, 154, 46,
163, 113, 13, 1,
204, 55, 3, 1,
249, 17, 1, 1,
255, 17, 1, 1};
255, 17, 1, 1
};
// Gradient palette "BlacK_Blue_Magenta_White_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/BlacK_Blue_Magenta_White.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( BlacK_Blue_Magenta_White_gp ) {
DEFINE_GRADIENT_PALETTE(BlacK_Blue_Magenta_White_gp) {
0, 0, 0, 0,
42, 0, 0, 45,
84, 0, 0,255,
127, 42, 0,255,
170, 255, 0,255,
212, 255, 55,255,
255, 255,255,255};
84, 0, 0, 255,
127, 42, 0, 255,
170, 255, 0, 255,
212, 255, 55, 255,
255, 255, 255, 255
};
// Gradient palette "BlacK_Magenta_Red_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/BlacK_Magenta_Red.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( BlacK_Magenta_Red_gp ) {
DEFINE_GRADIENT_PALETTE(BlacK_Magenta_Red_gp) {
0, 0, 0, 0,
63, 42, 0, 45,
127, 255, 0,255,
127, 255, 0, 255,
191, 255, 0, 45,
255, 255, 0, 0};
255, 255, 0, 0
};
// Gradient palette "BlacK_Red_Magenta_Yellow_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/BlacK_Red_Magenta_Yellow.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( BlacK_Red_Magenta_Yellow_gp ) {
DEFINE_GRADIENT_PALETTE(BlacK_Red_Magenta_Yellow_gp) {
0, 0, 0, 0,
42, 42, 0, 0,
84, 255, 0, 0,
127, 255, 0, 45,
170, 255, 0,255,
170, 255, 0, 255,
212, 255, 55, 45,
255, 255,255, 0};
255, 255, 255, 0
};
// Gradient palette "Blue_Cyan_Yellow_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/basic/tn/Blue_Cyan_Yellow.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 20 bytes of program space.
DEFINE_GRADIENT_PALETTE( Blue_Cyan_Yellow_gp ) {
0, 0, 0,255,
63, 0, 55,255,
127, 0,255,255,
191, 42,255, 45,
255, 255,255, 0};
DEFINE_GRADIENT_PALETTE(Blue_Cyan_Yellow_gp) {
0, 0, 0, 255,
63, 0, 55, 255,
127, 0, 255, 255,
191, 42, 255, 45,
255, 255, 255, 0
};
// Single array of defined cpt-city color palettes.
@ -514,5 +547,5 @@ const TProgmemRGBGradientPalettePtr gGradientPalettes[] = {
// Count of how many cpt-city gradients are defined:
const uint8_t gGradientPaletteCount =
sizeof( gGradientPalettes) / sizeof( TProgmemRGBGradientPalettePtr );
sizeof(gGradientPalettes) / sizeof(TProgmemRGBGradientPalettePtr);

View File

@ -99,26 +99,27 @@ CRGBPalette16 twinkleFoxPalette;
// / \
//
uint8_t attackDecayWave8( uint8_t i)
uint8_t attackDecayWave8(uint8_t i)
{
if( i < 86) {
if (i < 86) {
return i * 3;
} else {
}
else {
i -= 86;
return 255 - (i + (i/2));
return 255 - (i + (i / 2));
}
}
// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
void coolLikeIncandescent(CRGB& c, uint8_t phase)
{
if( phase < 128) return;
if (phase < 128) return;
uint8_t cooling = (phase - 128) >> 4;
c.g = qsub8( c.g, cooling);
c.b = qsub8( c.b, cooling * 2);
c.g = qsub8(c.g, cooling);
c.b = qsub8(c.b, cooling * 2);
}
// This function takes a time in pseudo-milliseconds,
@ -130,28 +131,29 @@ void coolLikeIncandescent( CRGB& c, uint8_t phase)
// of one cycle of the brightness wave function.
// The 'high digits' are also used to determine whether this pixel
// should light at all during this cycle, based on the twinkleDensity.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
CRGB computeOneTwinkle(uint32_t ms, uint8_t salt)
{
uint16_t ticks = ms >> (8-twinkleSpeed);
uint16_t ticks = ms >> (8 - twinkleSpeed);
uint8_t fastcycle8 = ticks;
uint16_t slowcycle16 = (ticks >> 8) + salt;
slowcycle16 += sin8( slowcycle16);
slowcycle16 += sin8(slowcycle16);
slowcycle16 = (slowcycle16 * 2053) + 1384;
uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
uint8_t bright = 0;
if( ((slowcycle8 & 0x0E)/2) < twinkleDensity) {
bright = attackDecayWave8( fastcycle8);
if (((slowcycle8 & 0x0E) / 2) < twinkleDensity) {
bright = attackDecayWave8(fastcycle8);
}
uint8_t hue = slowcycle8 - salt;
CRGB c;
if( bright > 0) {
c = ColorFromPalette( twinkleFoxPalette, hue, bright, NOBLEND);
if( COOL_LIKE_INCANDESCENT == 1 ) {
coolLikeIncandescent( c, fastcycle8);
if (bright > 0) {
c = ColorFromPalette(twinkleFoxPalette, hue, bright, NOBLEND);
if (COOL_LIKE_INCANDESCENT == 1) {
coolLikeIncandescent(c, fastcycle8);
}
} else {
}
else {
c = CRGB::Black;
}
return c;
@ -177,56 +179,143 @@ void drawTwinkles()
// the current palette are identical, then a deeply faded version of
// that color is used for the background color
CRGB bg;
if( (AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(twinkleFoxPalette[0] == twinkleFoxPalette[1] )) {
if ((AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(twinkleFoxPalette[0] == twinkleFoxPalette[1])) {
bg = twinkleFoxPalette[0];
uint8_t bglight = bg.getAverageLight();
if( bglight > 64) {
bg.nscale8_video( 16); // very bright, so scale to 1/16th
} else if( bglight > 16) {
bg.nscale8_video( 64); // not that bright, so scale to 1/4th
} else {
bg.nscale8_video( 86); // dim, scale to 1/3rd.
if (bglight > 64) {
bg.nscale8_video(16); // very bright, so scale to 1/16th
}
} else {
else if (bglight > 16) {
bg.nscale8_video(64); // not that bright, so scale to 1/4th
}
else {
bg.nscale8_video(86); // dim, scale to 1/3rd.
}
}
else {
bg = gBackgroundColor; // just use the explicitly defined background color
}
uint8_t backgroundBrightness = bg.getAverageLight();
for(uint16_t i = 0; i < NUM_LEDS; i++) {
CRGB& pixel = leds[i];
for (uint16_t i = 0; i < LEAFCOUNT; i++) {
CRGB& pixel = leds[i*PIXELS_PER_LEAF];
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
uint16_t myclockoffset16= PRNG16; // use that number as clock offset
uint16_t myclockoffset16 = PRNG16; // use that number as clock offset
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF)>>4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF) >> 4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
// We now have the adjusted 'clock' for this pixel, now we call
// the function that computes what color the pixel should be based
// on the "brightness = f( time )" idea.
CRGB c = computeOneTwinkle( myclock30, myunique8);
CRGB c = computeOneTwinkle(myclock30, myunique8);
uint8_t cbright = c.getAverageLight();
int16_t deltabright = cbright - backgroundBrightness;
if( deltabright >= 32 || (!bg)) {
if (deltabright >= 32 || (!bg)) {
// If the new pixel is significantly brighter than the background color,
// use the new color.
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, c);
//Serial.printf("rgb: %d, %d, %d\n", c.r,c.g,c.b);
}
else if (deltabright > 0) {
// If the new pixel is just slightly brighter than the background color,
// mix a blend of the new color and the background color
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, blend(bg, c, deltabright * 8));
//Serial.println("rgb:"+ blend(bg, c, deltabright * 8));
}
else {
// if the new pixel is not at all brighter than the background color,
// just use the background color.
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, bg);
//Serial.println("rgb:" + bg);
}
}
}
/////// #############################BACKUP####################################
/*
// This function loops over each pixel, calculates the
// adjusted 'clock' that this pixel should use, and calls
// "CalculateOneTwinkle" on each pixel. It then displays
// either the twinkle color of the background color,
// whichever is brighter.
void drawTwinkles()
{
// "PRNG16" is the pseudorandom number generator
// It MUST be reset to the same starting value each time
// this function is called, so that the sequence of 'random'
// numbers that it generates is (paradoxically) stable.
uint16_t PRNG16 = 11337;
uint32_t clock32 = millis();
// Set up the background color, "bg".
// if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
// the current palette are identical, then a deeply faded version of
// that color is used for the background color
CRGB bg;
if ((AUTO_SELECT_BACKGROUND_COLOR == 1) &&
(twinkleFoxPalette[0] == twinkleFoxPalette[1])) {
bg = twinkleFoxPalette[0];
uint8_t bglight = bg.getAverageLight();
if (bglight > 64) {
bg.nscale8_video(16); // very bright, so scale to 1/16th
}
else if (bglight > 16) {
bg.nscale8_video(64); // not that bright, so scale to 1/4th
}
else {
bg.nscale8_video(86); // dim, scale to 1/3rd.
}
}
else {
bg = gBackgroundColor; // just use the explicitly defined background color
}
uint8_t backgroundBrightness = bg.getAverageLight();
for (uint16_t i = 0; i < NUM_LEDS; i++) {
CRGB& pixel = leds[i];
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
uint16_t myclockoffset16 = PRNG16; // use that number as clock offset
PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
// use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
uint8_t myspeedmultiplierQ5_3 = ((((PRNG16 & 0xFF) >> 4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
uint8_t myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel
// We now have the adjusted 'clock' for this pixel, now we call
// the function that computes what color the pixel should be based
// on the "brightness = f( time )" idea.
CRGB c = computeOneTwinkle(myclock30, myunique8);
uint8_t cbright = c.getAverageLight();
int16_t deltabright = cbright - backgroundBrightness;
if (deltabright >= 32 || (!bg)) {
// If the new pixel is significantly brighter than the background color,
// use the new color.
pixel = c;
} else if( deltabright > 0 ) {
}
else if (deltabright > 0) {
// If the new pixel is just slightly brighter than the background color,
// mix a blend of the new color and the background color
pixel = blend( bg, c, deltabright * 8);
} else {
pixel = blend(bg, c, deltabright * 8);
}
else {
// if the new pixel is not at all brighter than the background color,
// just use the background color.
pixel = bg;
}
}
}
*/
// A mostly red palette with green accents and white trim.
// "CRGB::Gray" is used as white to keep the brightness more uniform.

View File

@ -7,17 +7,17 @@
enum { GETTING_DARKER = 0, GETTING_BRIGHTER = 1 };
CRGB makeBrighter( const CRGB& color, fract8 howMuchBrighter)
CRGB makeBrighter(const CRGB& color, fract8 howMuchBrighter)
{
CRGB incrementalColor = color;
incrementalColor.nscale8( howMuchBrighter);
incrementalColor.nscale8(howMuchBrighter);
return color + incrementalColor;
}
CRGB makeDarker( const CRGB& color, fract8 howMuchDarker)
CRGB makeDarker(const CRGB& color, fract8 howMuchDarker)
{
CRGB newcolor = color;
newcolor.nscale8( 255 - howMuchDarker);
newcolor.nscale8(255 - howMuchDarker);
return newcolor;
}
@ -26,9 +26,9 @@ CRGB makeDarker( const CRGB& color, fract8 howMuchDarker)
// per pixel. This requires a bunch of bit wrangling,
// but conserves precious RAM. The cost is a few
// cycles and about 100 bytes of flash program memory.
uint8_t directionFlags[ (NUM_LEDS + 7) / 8];
uint8_t directionFlags[(NUM_LEDS + 7) / 8];
bool getPixelDirection( uint16_t i)
bool getPixelDirection(uint16_t i)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
@ -37,7 +37,7 @@ bool getPixelDirection( uint16_t i)
return (directionFlags[index] & andMask) != 0;
}
void setPixelDirection( uint16_t i, bool dir)
void setPixelDirection(uint16_t i, bool dir)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
@ -45,25 +45,26 @@ void setPixelDirection( uint16_t i, bool dir)
uint8_t orMask = 1 << bitNum;
uint8_t andMask = 255 - orMask;
uint8_t value = directionFlags[index] & andMask;
if ( dir ) {
if (dir) {
value += orMask;
}
directionFlags[index] = value;
}
void brightenOrDarkenEachPixel( fract8 fadeUpAmount, fract8 fadeDownAmount)
void brightenOrDarkenEachPixel(fract8 fadeUpAmount, fract8 fadeDownAmount)
{
for ( uint16_t i = 0; i < NUM_LEDS; i++) {
if ( getPixelDirection(i) == GETTING_DARKER) {
for (uint16_t i = 0; i < LEAFCOUNT; i++) {
if (getPixelDirection(i*PIXELS_PER_LEAF) == GETTING_DARKER) {
// This pixel is getting darker
leds[i] = makeDarker( leds[i], fadeDownAmount);
} else {
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = makeDarker(leds[i*PIXELS_PER_LEAF + i2], fadeDownAmount);
}
else {
// This pixel is getting brighter
leds[i] = makeBrighter( leds[i], fadeUpAmount);
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = makeBrighter(leds[i*PIXELS_PER_LEAF + i2], fadeUpAmount);
// now check to see if we've maxxed out the brightness
if ( leds[i].r == 255 || leds[i].g == 255 || leds[i].b == 255) {
if (leds[i*PIXELS_PER_LEAF].r == 255 || leds[i*PIXELS_PER_LEAF].g == 255 || leds[i*PIXELS_PER_LEAF].b == 255) {
// if so, turn around and start getting darker
setPixelDirection(i, GETTING_DARKER);
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)setPixelDirection(i*PIXELS_PER_LEAF + i2, GETTING_DARKER);
}
}
}
@ -75,14 +76,18 @@ void colortwinkles()
{
// Make each pixel brighter or darker, depending on
// its 'direction' flag.
brightenOrDarkenEachPixel( FADE_IN_SPEED, FADE_OUT_SPEED);
brightenOrDarkenEachPixel(FADE_IN_SPEED, FADE_OUT_SPEED);
// Now consider adding a new random twinkle
if ( random8() < DENSITY ) {
int pos = random16(NUM_LEDS);
if ( !leds[pos]) {
leds[pos] = ColorFromPalette( gCurrentPalette, random8(), STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(pos, GETTING_BRIGHTER);
if (random8() < DENSITY) {
int pos = random16(LEAFCOUNT);
if (!leds[pos]) {
uint8_t rdo = random8();
for (int i = 0; i < PIXELS_PER_LEAF; i++)
{
leds[pos*PIXELS_PER_LEAF + i] = ColorFromPalette(gCurrentPalette, rdo, STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(pos*PIXELS_PER_LEAF + i, GETTING_BRIGHTER);
}
}
}
}
@ -104,7 +109,7 @@ void snowTwinkles()
{
CRGB w(85, 85, 85), W(CRGB::White);
gCurrentPalette = CRGBPalette16( W, W, W, W, w, w, w, w, w, w, w, w, w, w, w, w );
gCurrentPalette = CRGBPalette16(W, W, W, W, w, w, w, w, w, w, w, w, w, w, w, w);
colortwinkles();
}
@ -112,7 +117,7 @@ void incandescentTwinkles()
{
CRGB l(0xE1A024);
gCurrentPalette = CRGBPalette16( l, l, l, l, l, l, l, l, l, l, l, l, l, l, l, l );
gCurrentPalette = CRGBPalette16(l, l, l, l, l, l, l, l, l, l, l, l, l, l, l, l);
colortwinkles();
}

View File

@ -1,27 +1,20 @@
<!DOCTYPE html>
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>ESP8266 + FastLED by Evil Genius Labs</title>
<!-- request CSS from internet CDN -->
<!-- <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous"> -->
<!-- <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/jquery-minicolors/2.2.4/jquery.minicolors.min.css" integrity="sha256-4wnSkPYU5B4yngAlx/rEb8LdfMah4teUth4AfhGEuaY=" crossorigin="anonymous" /> -->
<!-- request CSS from the ESP8266 web server -->
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="stylesheet" href="css/minicolors.min.css">
<link rel="stylesheet" href="css/styles.css">
<link rel="icon" href="images/atom196.png">
</head>
<body>
<nav class="navbar navbar-default navbar-static-top" id="top" role="banner">
<div class="container">
<div class="navbar-header">
@ -36,7 +29,7 @@
</div>
<div class="collapse navbar-collapse" id="navbar-collapse-1">
<ul class="nav navbar-nav">
<li class="active"><a href="/">ESP8266 + FastLED <span class="sr-only">(current)</span></a></li>
<li class="active"><a href="/">DIY Nanoleaf control <span class="sr-only">(current)</span></a></li>
<li><a href="/simple.htm" target="_blank" title="Simple Mode">Simple</a></li>
<li><a href="/edit.htm" target="_blank" title="Edit Files">Files</a></li>
<li><a href="/update" target="_blank" title="Update Firmware">Firmware</a></li>
@ -52,22 +45,15 @@
</div>
</div>
</nav>
<div id="container" class="container">
<form class="form-horizontal" id="form">
</form>
<form class="form-horizontal" id="form"></form>
</div>
<div id="templates" style="display: none">
<div id="sectionTemplate" class="form-group">
<div class="col-sm-12">
<hr style="margin-bottom: 5px;margin-top: 5px;" />
</div>
</div>
<div id="numberTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-2">
@ -77,7 +63,6 @@
<input class="form-control slider" type="range" step="1" min="0" max="255" />
</div>
</div>
<div id="booleanTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-10">
@ -87,7 +72,6 @@
</div>
</div>
</div>
<div id="selectTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-8">
@ -107,8 +91,36 @@
</div>
</div>
<div id="booleanTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-10">
<div class="btn-group" role="group">
<button type="button" class="btn btn-default" id="btnOn">On</button>
<button type="button" class="btn btn-default" id="btnOff">Off</button>
</div>
</div>
</div>
<div id="selectTemplate" class="form-group">
<label class="col-sm-2 control-label"></label>
<div class="col-sm-8">
<select class="form-control"><select>
</div>
<div class="col-sm-2">
<div class="btn-group" role="group" aria-label="...">
<button type="button" class="btn btn-default btn-previous"
aria-label="Previous" title="Previous">
<span class="glyphicon glyphicon-chevron-left"></span>
</button>
<button type="button" class="btn btn-default btn-next"
aria-label="Next" title="Next">
<span class="glyphicon glyphicon-chevron-right"></span>
</button>
</div>
</div>
</div>
<div id="colorPaletteTemplate" class="form-group">
<label class="col-sm-2 control-label color-label"></label>
<div class="col-sm-10">
<div class="btn-group btn-group-justified" role="group">
<div class="btn-group" role="group">
@ -153,7 +165,6 @@
</div>
</div>
</div>
<div id="colorTemplate">
<div class="form-group">
<!-- <label class="col-sm-2 control-label color-label"></label> -->
@ -189,9 +200,7 @@
</div>
</div>
</div>
</div>
<nav class="navbar navbar-default navbar-fixed-bottom">
<div class="container">
<div class="navbar-header">
@ -214,21 +223,16 @@
</div>
</div>
</nav>
<!-- request js from internet CDN -->
<!-- <script src="https://code.jquery.com/jquery-3.1.1.min.js" integrity="sha256-hVVnYaiADRTO2PzUGmuLJr8BLUSjGIZsDYGmIJLv2b8=" crossorigin="anonymous"></script> -->
<!-- <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script> -->
<!-- <script src="https://cdnjs.cloudflare.com/ajax/libs/jquery-minicolors/2.2.4/jquery.minicolors.min.js" integrity="sha256-XAFQ9dZ6hy8p/GRhU8h/8pMvM1etymiJLZW1CiHV3bQ=" crossorigin="anonymous"></script> -->
<!-- <script src="https://cdnjs.cloudflare.com/ajax/libs/reconnecting-websocket/1.0.0/reconnecting-websocket.min.js" integrity="sha256-A4JwlcDvqO4JXpvEtvWY1RH8JAEMu5W21wP8GUXLUNs=" crossorigin="anonymous"></script> -->
<!-- request js from the ESP8266 web server -->
<script src="js/jquery-3.1.1.min.js"></script>
<script src="js/bootstrap.min.js"></script>
<script src="js/minicolors.min.js"></script>
<script src="js/r-websocket.min.js"></script>
<script src="js/app.js"></script>
</body>
</html>

View File

@ -16,6 +16,40 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//-----------------------------------------CONFIG-----------------------------------------//
#define LEAFCOUNT 12
#define PIXELS_PER_LEAF 12
#define DATA_PIN D4 // The pin where the data line is connected to
#define LED_TYPE WS2812B
#define COLOR_ORDER GRB // Color order, if e.g. your Colors are swapped then change the order, (RGB, RBG, GBR, GRB, BRG, BGR)
#define MILLI_AMPS 3000 // IMPORTANT: set the max milli-Amps of your power supply (4A = 4000mA)
#define FRAMES_PER_SECOND 120 // here you can control the speed. With the Access Point / Web Server the animations run a bit slower.
const bool apMode = false; // Set to true if the esp8266 should open an Access-Point
// Animation Config:
// ten seconds per color palette makes a good demo
// 20-120 is better for deployment
uint8_t secondsPerPalette = 60;
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
uint8_t cooling = 49;
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
uint8_t sparking = 160;
uint8_t speed = 20;
//---------------------------------------CONFIG END---------------------------------------//
//#define FASTLED_ALLOW_INTERRUPTS 1
//#define INTERRUPT_THRESHOLD 1
#define FASTLED_INTERRUPT_RETRY_COUNT 0
@ -52,15 +86,9 @@ ESP8266HTTPUpdateServer httpUpdateServer;
#include "FSBrowser.h"
#define DATA_PIN D5
#define LED_TYPE WS2811
#define COLOR_ORDER RGB
#define NUM_LEDS 200
#define MILLI_AMPS 2000 // IMPORTANT: set the max milli-Amps of your power supply (4A = 4000mA)
#define FRAMES_PER_SECOND 120 // here you can control the speed. With the Access Point / Web Server the animations run a bit slower.
#define NUM_LEDS (PIXELS_PER_LEAF * LEAFCOUNT)
const bool apMode = false;
#include "Secrets.h" // this file is intentionally not included in the sketch, so nobody accidentally commits their secret information.
// create a Secrets.h file with the following:
@ -79,21 +107,7 @@ const uint8_t brightnessCount = 5;
uint8_t brightnessMap[brightnessCount] = { 16, 32, 64, 128, 255 };
uint8_t brightnessIndex = 0;
// ten seconds per color palette makes a good demo
// 20-120 is better for deployment
uint8_t secondsPerPalette = 10;
// COOLING: How much does the air cool as it rises?
// Less cooling = taller flames. More cooling = shorter flames.
// Default 50, suggested range 20-100
uint8_t cooling = 49;
// SPARKING: What chance (out of 255) is there that a new spark will be lit?
// Higher chance = more roaring fire. Lower chance = more flickery fire.
// Default 120, suggested range 50-200.
uint8_t sparking = 60;
uint8_t speed = 30;
///////////////////////////////////////////////////////////////////////
@ -104,14 +118,17 @@ extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
uint8_t gCurrentPaletteNumber = 0;
CRGBPalette16 gCurrentPalette( CRGB::Black);
CRGBPalette16 gTargetPalette( gGradientPalettes[0] );
CRGBPalette16 gCurrentPalette(CRGB::Black);
CRGBPalette16 gTargetPalette(gGradientPalettes[0]);
CRGBPalette16 IceColors_p = CRGBPalette16(CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
uint8_t currentPatternIndex = 0; // Index number of which pattern is current
uint8_t autoplay = 0;
uint8_t allLeafs = 1; // Sets if all leafs should get the same color
uint8_t selectedLeaf = 1; // Sets position of leaf to color
uint8_t autoplayDuration = 10;
unsigned long autoPlayTimeout = 0;
@ -129,7 +146,7 @@ void dimAll(byte value)
}
}
typedef void (*Pattern)();
typedef void(*Pattern)();
typedef Pattern PatternList[];
typedef struct {
Pattern pattern;
@ -223,7 +240,6 @@ void setup() {
Serial.setDebugOutput(true);
FastLED.addLeds<LED_TYPE, DATA_PIN, COLOR_ORDER>(leds, NUM_LEDS); // for WS2812 (Neopixel)
//FastLED.addLeds<LED_TYPE,DATA_PIN,CLK_PIN,COLOR_ORDER>(leds, NUM_LEDS); // for APA102 (Dotstar)
FastLED.setDither(false);
FastLED.setCorrection(TypicalLEDStrip);
FastLED.setBrightness(brightness);
@ -239,14 +255,14 @@ void setup() {
// irReceiver.enableIRIn(); // Start the receiver
Serial.println();
Serial.print( F("Heap: ") ); Serial.println(system_get_free_heap_size());
Serial.print( F("Boot Vers: ") ); Serial.println(system_get_boot_version());
Serial.print( F("CPU: ") ); Serial.println(system_get_cpu_freq());
Serial.print( F("SDK: ") ); Serial.println(system_get_sdk_version());
Serial.print( F("Chip ID: ") ); Serial.println(system_get_chip_id());
Serial.print( F("Flash ID: ") ); Serial.println(spi_flash_get_id());
Serial.print( F("Flash Size: ") ); Serial.println(ESP.getFlashChipRealSize());
Serial.print( F("Vcc: ") ); Serial.println(ESP.getVcc());
Serial.print(F("Heap: ")); Serial.println(system_get_free_heap_size());
Serial.print(F("Boot Vers: ")); Serial.println(system_get_boot_version());
Serial.print(F("CPU: ")); Serial.println(system_get_cpu_freq());
Serial.print(F("SDK: ")); Serial.println(system_get_sdk_version());
Serial.print(F("Chip ID: ")); Serial.println(system_get_chip_id());
Serial.print(F("Flash ID: ")); Serial.println(spi_flash_get_id());
Serial.print(F("Flash Size: ")); Serial.println(ESP.getFlashChipRealSize());
Serial.print(F("Vcc: ")); Serial.println(ESP.getVcc());
Serial.println();
SPIFFS.begin();
@ -413,6 +429,18 @@ void setup() {
sendInt(autoplayDuration);
});
webServer.on("/allLeafs", HTTP_POST, []() {
String value = webServer.arg("value");
setAllLeafs(value.toInt());
sendInt(allLeafs);
});
webServer.on("/selectedLeaf", HTTP_POST, []() {
String value = webServer.arg("value");
setSelectedLeaf(value.toInt());
sendInt(selectedLeaf);
});
//list directory
webServer.on("/list", HTTP_GET, handleFileList);
//load editor
@ -499,14 +527,14 @@ void loop() {
// }
// change to a new cpt-city gradient palette
EVERY_N_SECONDS( secondsPerPalette ) {
gCurrentPaletteNumber = addmod8( gCurrentPaletteNumber, 1, gGradientPaletteCount);
gTargetPalette = gGradientPalettes[ gCurrentPaletteNumber ];
EVERY_N_SECONDS(secondsPerPalette) {
gCurrentPaletteNumber = addmod8(gCurrentPaletteNumber, 1, gGradientPaletteCount);
gTargetPalette = gGradientPalettes[gCurrentPaletteNumber];
}
EVERY_N_MILLISECONDS(40) {
EVERY_N_MILLISECONDS(80) {
// slowly blend the current palette to the next
nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 8);
nblendPaletteTowardPalette(gCurrentPalette, gTargetPalette, 8);
gHue++; // slowly cycle the "base color" through the rainbow
}
@ -561,212 +589,7 @@ void loop() {
// }
//}
//void handleIrInput()
//{
// InputCommand command = readCommand();
//
// if (command != InputCommand::None) {
// Serial.print("command: ");
// Serial.println((int) command);
// }
//
// switch (command) {
// case InputCommand::Up: {
// adjustPattern(true);
// break;
// }
// case InputCommand::Down: {
// adjustPattern(false);
// break;
// }
// case InputCommand::Power: {
// setPower(power == 0 ? 1 : 0);
// break;
// }
// case InputCommand::BrightnessUp: {
// adjustBrightness(true);
// break;
// }
// case InputCommand::BrightnessDown: {
// adjustBrightness(false);
// break;
// }
// case InputCommand::PlayMode: { // toggle pause/play
// setAutoplay(!autoplay);
// break;
// }
//
// // pattern buttons
//
// case InputCommand::Pattern1: {
// setPattern(0);
// break;
// }
// case InputCommand::Pattern2: {
// setPattern(1);
// break;
// }
// case InputCommand::Pattern3: {
// setPattern(2);
// break;
// }
// case InputCommand::Pattern4: {
// setPattern(3);
// break;
// }
// case InputCommand::Pattern5: {
// setPattern(4);
// break;
// }
// case InputCommand::Pattern6: {
// setPattern(5);
// break;
// }
// case InputCommand::Pattern7: {
// setPattern(6);
// break;
// }
// case InputCommand::Pattern8: {
// setPattern(7);
// break;
// }
// case InputCommand::Pattern9: {
// setPattern(8);
// break;
// }
// case InputCommand::Pattern10: {
// setPattern(9);
// break;
// }
// case InputCommand::Pattern11: {
// setPattern(10);
// break;
// }
// case InputCommand::Pattern12: {
// setPattern(11);
// break;
// }
//
// // custom color adjustment buttons
//
// case InputCommand::RedUp: {
// solidColor.red += 8;
// setSolidColor(solidColor);
// break;
// }
// case InputCommand::RedDown: {
// solidColor.red -= 8;
// setSolidColor(solidColor);
// break;
// }
// case InputCommand::GreenUp: {
// solidColor.green += 8;
// setSolidColor(solidColor);
// break;
// }
// case InputCommand::GreenDown: {
// solidColor.green -= 8;
// setSolidColor(solidColor);
// break;
// }
// case InputCommand::BlueUp: {
// solidColor.blue += 8;
// setSolidColor(solidColor);
// break;
// }
// case InputCommand::BlueDown: {
// solidColor.blue -= 8;
// setSolidColor(solidColor);
// break;
// }
//
// // color buttons
//
// case InputCommand::Red: {
// setSolidColor(CRGB::Red);
// break;
// }
// case InputCommand::RedOrange: {
// setSolidColor(CRGB::OrangeRed);
// break;
// }
// case InputCommand::Orange: {
// setSolidColor(CRGB::Orange);
// break;
// }
// case InputCommand::YellowOrange: {
// setSolidColor(CRGB::Goldenrod);
// break;
// }
// case InputCommand::Yellow: {
// setSolidColor(CRGB::Yellow);
// break;
// }
//
// case InputCommand::Green: {
// setSolidColor(CRGB::Green);
// break;
// }
// case InputCommand::Lime: {
// setSolidColor(CRGB::Lime);
// break;
// }
// case InputCommand::Aqua: {
// setSolidColor(CRGB::Aqua);
// break;
// }
// case InputCommand::Teal: {
// setSolidColor(CRGB::Teal);
// break;
// }
// case InputCommand::Navy: {
// setSolidColor(CRGB::Navy);
// break;
// }
//
// case InputCommand::Blue: {
// setSolidColor(CRGB::Blue);
// break;
// }
// case InputCommand::RoyalBlue: {
// setSolidColor(CRGB::RoyalBlue);
// break;
// }
// case InputCommand::Purple: {
// setSolidColor(CRGB::Purple);
// break;
// }
// case InputCommand::Indigo: {
// setSolidColor(CRGB::Indigo);
// break;
// }
// case InputCommand::Magenta: {
// setSolidColor(CRGB::Magenta);
// break;
// }
//
// case InputCommand::White: {
// setSolidColor(CRGB::White);
// break;
// }
// case InputCommand::Pink: {
// setSolidColor(CRGB::Pink);
// break;
// }
// case InputCommand::LightPink: {
// setSolidColor(CRGB::LightPink);
// break;
// }
// case InputCommand::BabyBlue: {
// setSolidColor(CRGB::CornflowerBlue);
// break;
// }
// case InputCommand::LightBlue: {
// setSolidColor(CRGB::LightBlue);
// break;
// }
// }
//}
void loadSettings()
{
@ -834,6 +657,26 @@ void setAutoplayDuration(uint8_t value)
broadcastInt("autoplayDuration", autoplayDuration);
}
void setAllLeafs(uint8_t value)
{
allLeafs = value == 0 ? 0 : 1;
EEPROM.write(8, allLeafs);
EEPROM.commit();
broadcastInt("allLeafs", allLeafs);
}
void setSelectedLeaf(uint8_t value)
{
selectedLeaf = value;
EEPROM.write(9, selectedLeaf);
EEPROM.commit();
broadcastInt("selectedLeaf", selectedLeaf);
}
void setSolidColor(CRGB color)
{
setSolidColor(color.r, color.g, color.b);
@ -974,7 +817,8 @@ void strandTest()
void showSolidColor()
{
fill_solid(leds, NUM_LEDS, solidColor);
if (allLeafs == 0 && selectedLeaf > 0 && selectedLeaf <= LEAFCOUNT)fill_solid(leds + PIXELS_PER_LEAF * (selectedLeaf - 1), PIXELS_PER_LEAF, solidColor);
else fill_solid(leds, NUM_LEDS, solidColor);
}
// Patterns from FastLED example DemoReel100: https://github.com/FastLED/FastLED/blob/master/examples/DemoReel100/DemoReel100.ino
@ -982,7 +826,13 @@ void showSolidColor()
void rainbow()
{
// FastLED's built-in rainbow generator
fill_rainbow( leds, NUM_LEDS, gHue, 255 / NUM_LEDS);
for (int i = 0; i < LEAFCOUNT; i++)
{
uint8_t myHue = (gHue + i * (255 / LEAFCOUNT));
gHue = gHue > 255 ? gHue - 255 : gHue;
//Serial.printf("I:%d \tH:%d\n", i*PIXELS_PER_LEAF, myHue);
fill_solid(leds + i * PIXELS_PER_LEAF, PIXELS_PER_LEAF, CHSV(myHue, 255, 255));
}
}
void rainbowWithGlitter()
@ -1000,23 +850,30 @@ void rainbowSolid()
void confetti()
{
// random colored speckles that blink in and fade smoothly
fadeToBlackBy( leds, NUM_LEDS, 10);
int pos = random16(NUM_LEDS);
fadeToBlackBy(leds, NUM_LEDS, 3);
int pos = random16(LEAFCOUNT * 3);
// leds[pos] += CHSV( gHue + random8(64), 200, 255);
leds[pos] += ColorFromPalette(palettes[currentPaletteIndex], gHue + random8(64));
int val = gHue + random8(64);
for (int i = 0; i < (PIXELS_PER_LEAF / 3); i++)
{
leds[i + pos * (PIXELS_PER_LEAF / 3)] += ColorFromPalette(palettes[currentPaletteIndex], val);
//Serial.printf("POS:%d\n", i + pos);
}
}
void sinelon()
{
// a colored dot sweeping back and forth, with fading trails
fadeToBlackBy( leds, NUM_LEDS, 20);
fadeToBlackBy(leds, NUM_LEDS, 20);
int pos = beatsin16(speed, 0, NUM_LEDS);
static int prevpos = 0;
CRGB color = ColorFromPalette(palettes[currentPaletteIndex], gHue, 255);
if ( pos < prevpos ) {
fill_solid( leds + pos, (prevpos - pos) + 1, color);
} else {
fill_solid( leds + prevpos, (pos - prevpos) + 1, color);
if (pos < prevpos) {
fill_solid(leds + pos, (prevpos - pos) + 1, color);
}
else {
fill_solid(leds + prevpos, (pos - prevpos) + 1, color);
}
prevpos = pos;
}
@ -1024,12 +881,25 @@ void sinelon()
void bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t beat = beatsin8( speed, 64, 255);
uint8_t beat = beatsin8(speed, 64, 255);
CRGBPalette16 palette = palettes[currentPaletteIndex];
for ( int i = 0; i < NUM_LEDS; i++) {
for (int i = 0; i < LEAFCOUNT; i++) {
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10));
}
}
// BACKUP
/*
void bpm()
{
// colored stripes pulsing at a defined Beats-Per-Minute (BPM)
uint8_t beat = beatsin8(speed, 64, 255);
CRGBPalette16 palette = palettes[currentPaletteIndex];
for (int i = 0; i < NUM_LEDS; i++) {
leds[i] = ColorFromPalette(palette, gHue + (i * 2), beat - gHue + (i * 10));
}
}
*/
void juggle()
{
@ -1058,7 +928,7 @@ void juggle()
// Several colored dots, weaving in and out of sync with each other
curhue = thishue; // Reset the hue values.
fadeToBlackBy(leds, NUM_LEDS, faderate);
for ( int i = 0; i < numdots; i++) {
for (int i = 0; i < numdots; i++) {
//beat16 is a FastLED 3.1 function
leds[beatsin16(basebeat + i + numdots, 0, NUM_LEDS)] += CHSV(gHue + curhue, thissat, thisbright);
curhue += hueinc;
@ -1075,6 +945,55 @@ void water()
heatMap(IceColors_p, false);
}
// Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
void pride()
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
uint8_t sat8 = beatsin88(87, 220, 250);
uint8_t brightdepth = beatsin88(341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88(203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 1, 3000);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88(400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for (uint16_t i = 0; i < (LEAFCOUNT * 3); i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16(brightnesstheta16) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
bri8 += (255 - brightdepth);
CRGB newcolor = CHSV(hue8, sat8, bri8);
uint16_t pixelnumber = i;
pixelnumber = ((LEAFCOUNT * 3) - 1) - pixelnumber;
for (int i2 = 0; i2 < (PIXELS_PER_LEAF / 3); i2++)
{
nblend(leds[pixelnumber*(PIXELS_PER_LEAF / 3) + i2], newcolor, 64);
}
}
}
//#############BACKUP########################
/*
// Pride2015 by Mark Kriegsman: https://gist.github.com/kriegsman/964de772d64c502760e5
// This function draws rainbows with an ever-changing,
// widely-varying set of parameters.
@ -1119,6 +1038,8 @@ void pride()
}
}
*/
void radialPaletteShift()
{
for (uint16_t i = 0; i < NUM_LEDS; i++) {
@ -1141,23 +1062,23 @@ void heatMap(CRGBPalette16 palette, bool up)
byte colorindex;
// Step 1. Cool down every cell a little
for ( uint16_t i = 0; i < NUM_LEDS; i++) {
heat[i] = qsub8( heat[i], random8(0, ((cooling * 10) / NUM_LEDS) + 2));
for (uint16_t i = 0; i < NUM_LEDS; i++) {
heat[i] = qsub8(heat[i], random8(0, ((cooling * 10) / NUM_LEDS) + 2));
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for ( uint16_t k = NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2] ) / 3;
for (uint16_t k = NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' of heat near the bottom
if ( random8() < sparking ) {
if (random8() < sparking) {
int y = random8(7);
heat[y] = qadd8( heat[y], random8(160, 255) );
heat[y] = qadd8(heat[y], random8(160, 255));
}
// Step 4. Map from heat cells to LED colors
for ( uint16_t j = 0; j < NUM_LEDS; j++) {
for (uint16_t j = 0; j < NUM_LEDS; j++) {
// Scale the heat value from 0-255 down to 0-240
// for best results with color palettes.
colorindex = scale8(heat[j], 190);
@ -1173,10 +1094,10 @@ void heatMap(CRGBPalette16 palette, bool up)
}
}
void addGlitter( uint8_t chanceOfGlitter)
void addGlitter(uint8_t chanceOfGlitter)
{
if ( random8() < chanceOfGlitter) {
leds[ random16(NUM_LEDS) ] += CRGB::White;
if (random8() < chanceOfGlitter) {
leds[random16(NUM_LEDS)] += CRGB::White;
}
}
@ -1188,58 +1109,59 @@ void addGlitter( uint8_t chanceOfGlitter)
extern const TProgmemRGBGradientPalettePtr gGradientPalettes[];
extern const uint8_t gGradientPaletteCount;
uint8_t beatsaw8( accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255,
uint8_t beatsaw8(accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255,
uint32_t timebase = 0, uint8_t phase_offset = 0)
{
uint8_t beat = beat8( beats_per_minute, timebase);
uint8_t beat = beat8(beats_per_minute, timebase);
uint8_t beatsaw = beat + phase_offset;
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8( beatsaw, rangewidth);
uint8_t scaledbeat = scale8(beatsaw, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
void colorWaves()
{
colorwaves( leds, NUM_LEDS, gCurrentPalette);
colorwaves(leds, LEAFCOUNT * 3, gCurrentPalette);
}
// ColorWavesWithPalettes by Mark Kriegsman: https://gist.github.com/kriegsman/8281905786e8b2632aeb
// This function draws color waves with an ever-changing,
// widely-varying set of parameters, using a color palette.
void colorwaves( CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette)
void colorwaves(CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette)
{
static uint16_t sPseudotime = 0;
static uint16_t sLastMillis = 0;
static uint16_t sHue16 = 0;
// uint8_t sat8 = beatsin88( 87, 220, 250);
uint8_t brightdepth = beatsin88( 341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88( 203, (25 * 256), (40 * 256));
uint8_t brightdepth = beatsin88(341, 96, 224);
uint16_t brightnessthetainc16 = beatsin88(203, (25 * 256), (40 * 256));
uint8_t msmultiplier = beatsin88(147, 23, 60);
uint16_t hue16 = sHue16;//gHue * 256;
uint16_t hueinc16 = beatsin88(113, 300, 1500);
uint16_t ms = millis();
uint16_t deltams = ms - sLastMillis ;
uint16_t deltams = ms - sLastMillis;
sLastMillis = ms;
sPseudotime += deltams * msmultiplier;
sHue16 += deltams * beatsin88( 400, 5, 9);
sHue16 += deltams * beatsin88(400, 5, 9);
uint16_t brightnesstheta16 = sPseudotime;
for ( uint16_t i = 0 ; i < numleds; i++) {
for (uint16_t i = 0; i < numleds; i++) {
hue16 += hueinc16;
uint8_t hue8 = hue16 / 256;
uint16_t h16_128 = hue16 >> 7;
if ( h16_128 & 0x100) {
if (h16_128 & 0x100) {
hue8 = 255 - (h16_128 >> 1);
} else {
}
else {
hue8 = h16_128 >> 1;
}
brightnesstheta16 += brightnessthetainc16;
uint16_t b16 = sin16( brightnesstheta16 ) + 32768;
uint16_t b16 = sin16(brightnesstheta16) + 32768;
uint16_t bri16 = (uint32_t)((uint32_t)b16 * (uint32_t)b16) / 65536;
uint8_t bri8 = (uint32_t)(((uint32_t)bri16) * brightdepth) / 65536;
@ -1247,22 +1169,27 @@ void colorwaves( CRGB* ledarray, uint16_t numleds, CRGBPalette16& palette)
uint8_t index = hue8;
//index = triwave8( index);
index = scale8( index, 240);
index = scale8(index, 240);
CRGB newcolor = ColorFromPalette( palette, index, bri8);
CRGB newcolor = ColorFromPalette(palette, index, bri8);
uint16_t pixelnumber = i;
pixelnumber = (numleds - 1) - pixelnumber;
//pixelnumber = (numleds - 1) - pixelnumber;
//nblend(ledarray[pixelnumber], newcolor, 128);
nblend( ledarray[pixelnumber], newcolor, 128);
pixelnumber = ((LEAFCOUNT * 3) - 1) - pixelnumber;
for (int i2 = 0; i2 < (PIXELS_PER_LEAF / 3); i2++)
{
nblend(leds[pixelnumber*(PIXELS_PER_LEAF / 3) + i2], newcolor, 128);
}
}
}
// Alternate rendering function just scrolls the current palette
// across the defined LED strip.
void palettetest( CRGB* ledarray, uint16_t numleds, const CRGBPalette16& gCurrentPalette)
void palettetest(CRGB* ledarray, uint16_t numleds, const CRGBPalette16& gCurrentPalette)
{
static uint8_t startindex = 0;
startindex--;
fill_palette( ledarray, numleds, startindex, (256 / NUM_LEDS) + 1, gCurrentPalette, 255, LINEARBLEND);
fill_palette(ledarray, numleds, startindex, (256 / NUM_LEDS) + 1, gCurrentPalette, 255, LINEARBLEND);
}