esp8266-nanoleaf-webserver/Twinkles.h

124 lines
3.4 KiB
C
Raw Permalink Normal View History

// based on ColorTwinkles by Mark Kriegsman: https://gist.github.com/kriegsman/5408ecd397744ba0393e
#define STARTING_BRIGHTNESS 64
#define FADE_IN_SPEED 32
#define FADE_OUT_SPEED 20
#define DENSITY 255
enum { GETTING_DARKER = 0, GETTING_BRIGHTER = 1 };
CRGB makeBrighter(const CRGB& color, fract8 howMuchBrighter)
{
CRGB incrementalColor = color;
incrementalColor.nscale8(howMuchBrighter);
return color + incrementalColor;
}
CRGB makeDarker(const CRGB& color, fract8 howMuchDarker)
{
CRGB newcolor = color;
newcolor.nscale8(255 - howMuchDarker);
return newcolor;
}
// Compact implementation of
// the directionFlags array, using just one BIT of RAM
// per pixel. This requires a bunch of bit wrangling,
// but conserves precious RAM. The cost is a few
// cycles and about 100 bytes of flash program memory.
uint8_t directionFlags[(NUM_LEDS + 7) / 8];
bool getPixelDirection(uint16_t i)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
uint8_t andMask = 1 << bitNum;
return (directionFlags[index] & andMask) != 0;
}
void setPixelDirection(uint16_t i, bool dir)
{
uint16_t index = i / 8;
uint8_t bitNum = i & 0x07;
uint8_t orMask = 1 << bitNum;
uint8_t andMask = 255 - orMask;
uint8_t value = directionFlags[index] & andMask;
if (dir) {
value += orMask;
}
directionFlags[index] = value;
}
void brightenOrDarkenEachPixel(fract8 fadeUpAmount, fract8 fadeDownAmount)
{
for (uint16_t i = 0; i < LEAFCOUNT; i++) {
if (getPixelDirection(i*PIXELS_PER_LEAF) == GETTING_DARKER) {
// This pixel is getting darker
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = makeDarker(leds[i*PIXELS_PER_LEAF + i2], fadeDownAmount);
}
else {
// This pixel is getting brighter
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)leds[i*PIXELS_PER_LEAF + i2] = makeBrighter(leds[i*PIXELS_PER_LEAF + i2], fadeUpAmount);
// now check to see if we've maxxed out the brightness
if (leds[i*PIXELS_PER_LEAF].r == 255 || leds[i*PIXELS_PER_LEAF].g == 255 || leds[i*PIXELS_PER_LEAF].b == 255) {
// if so, turn around and start getting darker
for (int i2 = 0; i2 < PIXELS_PER_LEAF; i2++)setPixelDirection(i*PIXELS_PER_LEAF + i2, GETTING_DARKER);
}
}
}
}
void colortwinkles()
{
EVERY_N_MILLIS(30)
{
// Make each pixel brighter or darker, depending on
// its 'direction' flag.
brightenOrDarkenEachPixel(FADE_IN_SPEED, FADE_OUT_SPEED);
// Now consider adding a new random twinkle
if (random8() < DENSITY) {
int pos = random16(LEAFCOUNT);
if (!leds[pos]) {
uint8_t rdo = random8();
for (int i = 0; i < PIXELS_PER_LEAF; i++)
{
leds[pos*PIXELS_PER_LEAF + i] = ColorFromPalette(gCurrentPalette, rdo, STARTING_BRIGHTNESS, NOBLEND);
setPixelDirection(pos*PIXELS_PER_LEAF + i, GETTING_BRIGHTER);
}
}
}
}
}
void cloudTwinkles()
{
gCurrentPalette = CloudColors_p; // Blues and whites!
colortwinkles();
}
void rainbowTwinkles()
{
gCurrentPalette = RainbowColors_p;
colortwinkles();
}
void snowTwinkles()
{
CRGB w(85, 85, 85), W(CRGB::White);
gCurrentPalette = CRGBPalette16(W, W, W, W, w, w, w, w, w, w, w, w, w, w, w, w);
colortwinkles();
}
void incandescentTwinkles()
{
CRGB l(0xE1A024);
gCurrentPalette = CRGBPalette16(l, l, l, l, l, l, l, l, l, l, l, l, l, l, l, l);
colortwinkles();
}