Files
Filaman/src/scale.cpp
2025-09-03 15:28:03 +02:00

404 lines
11 KiB
C++

#include "nfc.h"
#include <Arduino.h>
#include <ArduinoJson.h>
#include "config.h"
#include "HX711.h"
#include "display.h"
#include "esp_task_wdt.h"
#include <Preferences.h>
HX711 scale;
TaskHandle_t ScaleTask;
int16_t weight = 0;
// Weight stabilization variables
#define MOVING_AVERAGE_SIZE 8 // Reduced from 20 to 8 for faster response
#define LOW_PASS_ALPHA 0.3f // Increased from 0.15 to 0.3 for faster tracking
#define DISPLAY_THRESHOLD 0.3f // Reduced from 0.5 to 0.3g for more responsive display
#define API_THRESHOLD 1.5f // Reduced from 2.0 to 1.5g for faster API actions
#define MEASUREMENT_INTERVAL_MS 30 // Reduced from 50ms to 30ms for faster updates
float weightBuffer[MOVING_AVERAGE_SIZE];
uint8_t bufferIndex = 0;
bool bufferFilled = false;
float filteredWeight = 0.0f;
int16_t lastDisplayedWeight = 0;
int16_t lastStableWeight = 0; // For API/action triggering
unsigned long lastMeasurementTime = 0;
uint8_t weigthCouterToApi = 0;
uint8_t scale_tare_counter = 0;
bool scaleTareRequest = false;
uint8_t pauseMainTask = 0;
bool scaleCalibrated;
bool autoTare = true;
bool scaleCalibrationActive = false;
// ##### Weight stabilization functions #####
/**
* Reset weight filter buffer - call after tare or calibration
*/
void resetWeightFilter() {
bufferIndex = 0;
bufferFilled = false;
filteredWeight = 0.0f;
lastDisplayedWeight = 0;
lastStableWeight = 0; // Reset stable weight for API actions
// Initialize buffer with zeros
for (int i = 0; i < MOVING_AVERAGE_SIZE; i++) {
weightBuffer[i] = 0.0f;
}
}
/**
* Calculate moving average from weight buffer
*/
float calculateMovingAverage() {
float sum = 0.0f;
int count = bufferFilled ? MOVING_AVERAGE_SIZE : bufferIndex;
for (int i = 0; i < count; i++) {
sum += weightBuffer[i];
}
return (count > 0) ? sum / count : 0.0f;
}
/**
* Apply low-pass filter to smooth weight readings
* Uses exponential smoothing: y_new = alpha * x_new + (1-alpha) * y_old
*/
float applyLowPassFilter(float newValue) {
filteredWeight = LOW_PASS_ALPHA * newValue + (1.0f - LOW_PASS_ALPHA) * filteredWeight;
return filteredWeight;
}
/**
* Process new weight reading with stabilization
* Returns stabilized weight value
*/
int16_t processWeightReading(float rawWeight) {
// Add to moving average buffer
weightBuffer[bufferIndex] = rawWeight;
bufferIndex = (bufferIndex + 1) % MOVING_AVERAGE_SIZE;
if (bufferIndex == 0) {
bufferFilled = true;
}
// Calculate moving average
float avgWeight = calculateMovingAverage();
// Apply low-pass filter
float smoothedWeight = applyLowPassFilter(avgWeight);
// Round to nearest gram
int16_t newWeight = round(smoothedWeight);
// Update displayed weight if display threshold is reached
if (abs(newWeight - lastDisplayedWeight) >= DISPLAY_THRESHOLD) {
lastDisplayedWeight = newWeight;
}
// Update global weight for API actions only if stable threshold is reached
int16_t weightToReturn = weight; // Default: keep current weight
if (abs(newWeight - lastStableWeight) >= API_THRESHOLD) {
lastStableWeight = newWeight;
weightToReturn = newWeight;
}
return weightToReturn;
}
/**
* Get current filtered weight for display purposes
* This returns the smoothed weight even if it hasn't triggered API actions
*/
int16_t getFilteredDisplayWeight() {
return lastDisplayedWeight;
}
// ##### Funktionen für Waage #####
uint8_t setAutoTare(bool autoTareValue) {
Serial.print("Set AutoTare to ");
Serial.println(autoTareValue);
autoTare = autoTareValue;
// Speichern mit NVS
Preferences preferences;
preferences.begin(NVS_NAMESPACE_SCALE, false); // false = readwrite
preferences.putBool(NVS_KEY_AUTOTARE, autoTare);
preferences.end();
return 1;
}
uint8_t tareScale() {
Serial.println("Tare scale");
scale.tare();
resetWeightFilter();
return 1;
}
void scale_loop(void * parameter) {
Serial.println("++++++++++++++++++++++++++++++");
Serial.println("Scale Loop started");
Serial.println("++++++++++++++++++++++++++++++");
//scaleTareRequest == true;
// Initialize weight filter
resetWeightFilter();
lastMeasurementTime = millis();
for(;;) {
unsigned long currentTime = millis();
// Only measure at defined intervals to reduce noise
if (currentTime - lastMeasurementTime >= MEASUREMENT_INTERVAL_MS) {
if (scale.is_ready())
{
// Waage manuell Taren
if (scaleTareRequest == true || (autoTare && scale_tare_counter >= 20))
{
Serial.println("Re-Tare scale");
oledShowMessage("TARE Scale");
vTaskDelay(pdMS_TO_TICKS(1000));
scale.tare();
resetWeightFilter(); // Reset filter after manual tare
vTaskDelay(pdMS_TO_TICKS(1000));
oledShowWeight(0);
scaleTareRequest = false;
scale_tare_counter = 0;
weight = 0; // Reset global weight variable after tare
}
// Get raw weight reading
float rawWeight = scale.get_units();
// Process weight with stabilization
int16_t stabilizedWeight = processWeightReading(rawWeight);
// Update global weight variable only if it changed significantly (for API actions)
if (stabilizedWeight != weight) {
weight = stabilizedWeight;
}
// Prüfen ob die Waage korrekt genullt ist
// Abweichung von 2g ignorieren
if (autoTare && (rawWeight > 2 && rawWeight < 7) || rawWeight < -2)
{
scale_tare_counter++;
}
else
{
scale_tare_counter = 0;
}
// Debug output for monitoring (can be removed in production)
static unsigned long lastDebugTime = 0;
if (currentTime - lastDebugTime > 2000) { // Print every 2 seconds
lastDebugTime = currentTime;
}
lastMeasurementTime = currentTime;
}
}
vTaskDelay(pdMS_TO_TICKS(10)); // Shorter delay for more responsive loop
}
}
void start_scale(bool touchSensorConnected) {
Serial.println("Prüfe Calibration Value");
float calibrationValue;
// NVS lesen
Preferences preferences;
preferences.begin(NVS_NAMESPACE_SCALE, true); // true = readonly
if(preferences.isKey(NVS_KEY_CALIBRATION)){
calibrationValue = preferences.getFloat(NVS_KEY_CALIBRATION);
scaleCalibrated = true;
}else{
calibrationValue = SCALE_DEFAULT_CALIBRATION_VALUE;
scaleCalibrated = false;
}
// auto Tare
// Wenn Touch Sensor verbunden, dann autoTare auf false setzen
// Danach prüfen was in NVS gespeichert ist
autoTare = (touchSensorConnected) ? false : true;
autoTare = preferences.getBool(NVS_KEY_AUTOTARE, autoTare);
preferences.end();
Serial.print("Read Scale Calibration Value ");
Serial.println(calibrationValue);
scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);
oledShowProgressBar(6, 7, DISPLAY_BOOT_TEXT, "Serching scale");
for (uint16_t i = 0; i < 3000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
while(!scale.is_ready()) {
vTaskDelay(pdMS_TO_TICKS(5000));
}
scale.set_scale(calibrationValue);
//vTaskDelay(pdMS_TO_TICKS(5000));
// Initialize weight stabilization filter
resetWeightFilter();
// Display Gewicht
oledShowWeight(0);
Serial.println("starte Scale Task");
BaseType_t result = xTaskCreatePinnedToCore(
scale_loop, /* Function to implement the task */
"ScaleLoop", /* Name of the task */
2048, /* Stack size in words */
NULL, /* Task input parameter */
scaleTaskPrio, /* Priority of the task */
&ScaleTask, /* Task handle. */
scaleTaskCore); /* Core where the task should run */
if (result != pdPASS) {
Serial.println("Fehler beim Erstellen des ScaleLoop-Tasks");
} else {
Serial.println("ScaleLoop-Task erfolgreich erstellt");
}
}
uint8_t calibrate_scale() {
uint8_t returnState = 0;
float newCalibrationValue;
scaleCalibrationActive = true;
vTaskSuspend(RfidReaderTask);
vTaskSuspend(ScaleTask);
pauseBambuMqttTask = true;
pauseMainTask = 1;
if (scale.wait_ready_timeout(1000))
{
scale.set_scale();
oledShowProgressBar(0, 3, "Scale Cal.", "Empty Scale");
for (uint16_t i = 0; i < 5000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
scale.tare();
Serial.println("Tare done...");
Serial.print("Place a known weight on the scale...");
oledShowProgressBar(1, 3, "Scale Cal.", "Place the weight");
for (uint16_t i = 0; i < 5000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
float newCalibrationValue = scale.get_units(10);
Serial.print("Result: ");
Serial.println(newCalibrationValue);
newCalibrationValue = newCalibrationValue/SCALE_LEVEL_WEIGHT;
if (newCalibrationValue > 0)
{
Serial.print("New calibration value has been set to: ");
Serial.println(newCalibrationValue);
// Speichern mit NVS
Preferences preferences;
preferences.begin(NVS_NAMESPACE_SCALE, false); // false = readwrite
preferences.putFloat(NVS_KEY_CALIBRATION, newCalibrationValue);
preferences.end();
// Verifizieren
preferences.begin(NVS_NAMESPACE_SCALE, true);
float verifyValue = preferences.getFloat(NVS_KEY_CALIBRATION, 0);
preferences.end();
Serial.print("Verified stored value: ");
Serial.println(verifyValue);
oledShowProgressBar(2, 3, "Scale Cal.", "Remove weight");
scale.set_scale(newCalibrationValue);
resetWeightFilter(); // Reset filter after calibration
for (uint16_t i = 0; i < 2000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
oledShowProgressBar(3, 3, "Scale Cal.", "Completed");
// For some reason it is not possible to re-tare the scale here, it will result in a wdt timeout. Instead let the scale loop do the taring
//scale.tare();
scaleTareRequest = true;
for (uint16_t i = 0; i < 2000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
scaleCalibrated = true;
returnState = 1;
}
else
{
Serial.println("Calibration value is invalid. Please recalibrate.");
oledShowProgressBar(3, 3, "Failure", "Calibration error");
for (uint16_t i = 0; i < 50000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
returnState = 0;
}
}
else
{
Serial.println("HX711 not found.");
oledShowMessage("HX711 not found");
for (uint16_t i = 0; i < 30000; i++) {
yield();
vTaskDelay(pdMS_TO_TICKS(1));
esp_task_wdt_reset();
}
returnState = 0;
}
vTaskResume(RfidReaderTask);
vTaskResume(ScaleTask);
pauseBambuMqttTask = false;
pauseMainTask = 0;
scaleCalibrationActive = false;
return returnState;
}